SERC DOCTORAL STUDENT FORUM 2023 | NOVEMBER 14, 2023

Closed Systems Precepts in Systems Engineering for Artificial Intelligent (SE4AI)

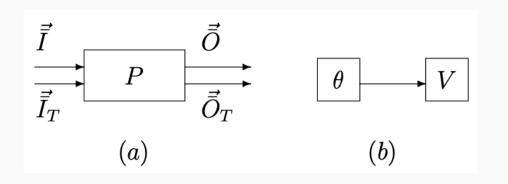
Niloofar Shadab, Advised by Dr. Peter Beling and Dr. Alejandro Salado

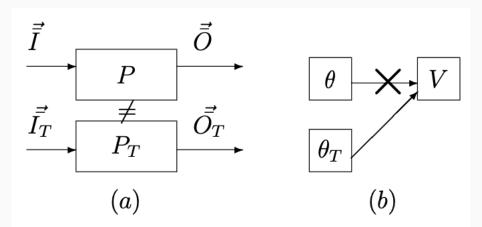
Agenda

- Current Gaps in SE4Al
- Unique Nature of Intelligent Property
- Complementary Precepts- Closed Systems Precepts
- Core and Periphery Concept
- Evidence in Real-world Applications

Current Gaps in SE4AI

Al Fragility to Environmental Changes

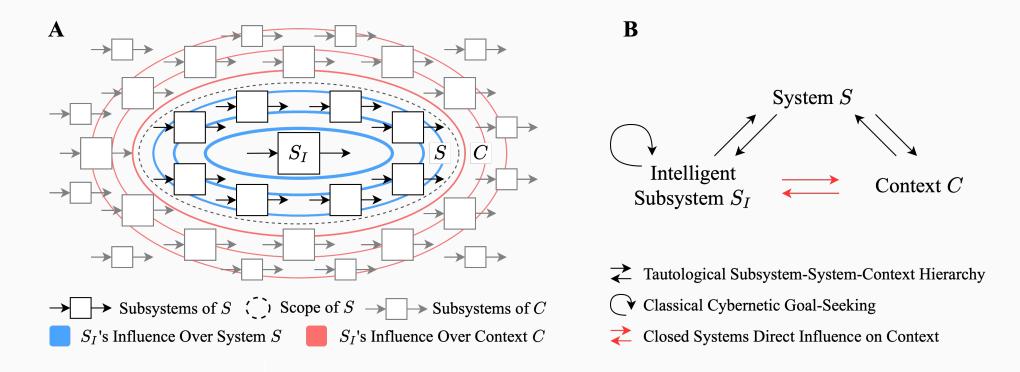


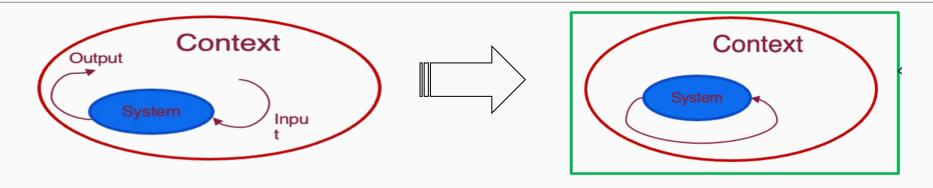


- Small change in inputs set would have unpredicted consequences
- No direct relation between the changes in inputs and outputs.

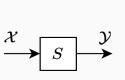
Current Gaps in SE4AI

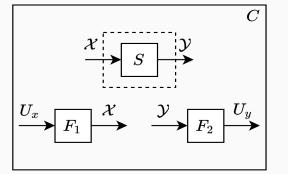
Continuous Learning Aspects

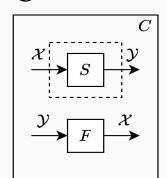


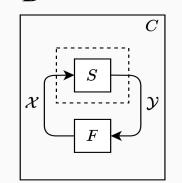

• Similar problem can appear in other SE activities such as manufacturing, design, and requirements engineering

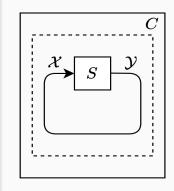
Unique Nature of Intelligence Property


- Closed Relation between the system and its environment
- Dissolution of boundary of intelligence
- Intelligence as a system-level relational property to its environment


Closed Systems Precepts

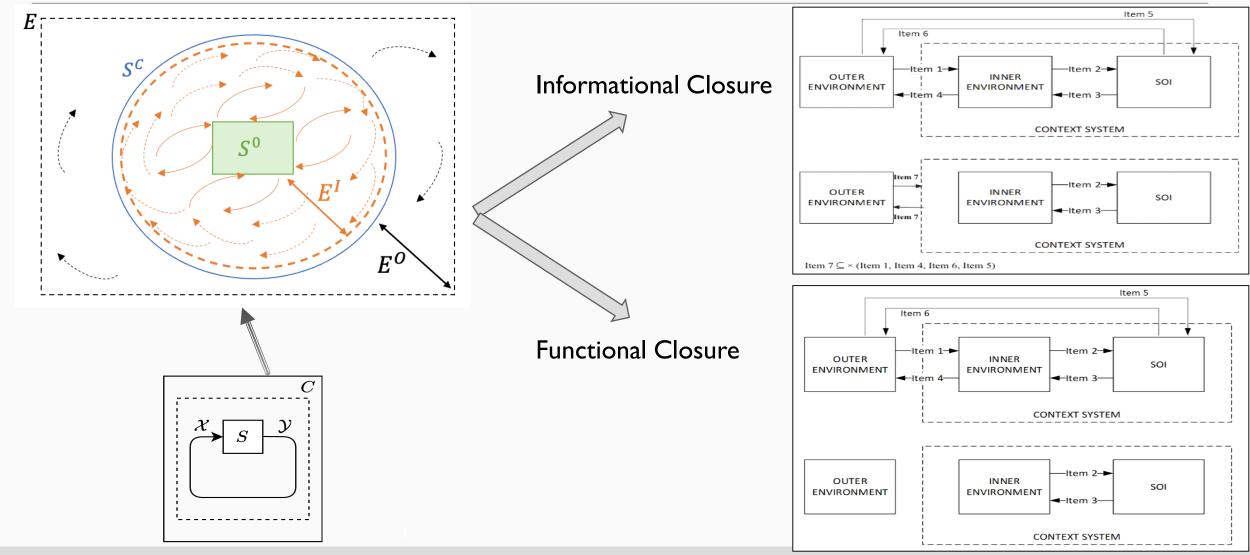

A


B


 \mathbf{C}

D

 \mathbf{E}



$$S \subset \times \{\mathcal{X}, \mathcal{Y}\}$$

$$\exists f: \mathcal{Y} \to \mathcal{X}$$

$$\mathcal{X} \cap \mathcal{Y} = \emptyset$$

Closed Systems Precepts in SE Practices

Closed Systems Precept Formalism

Functionally Closed System

$$F \subseteq \times \{F_i | i \in I\} \text{ s. } t F: X_m \to Y_m$$

Where: $X_m \subseteq M$ $Y_m \subseteq M$

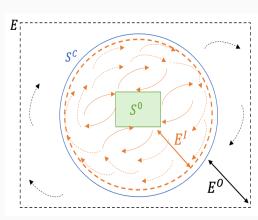
If:
$$\exists X_E$$
, $\exists Y_E$, s.t $X_m \subseteq X_E$, $Y_m \subseteq Y_E$

We have: $F: X_E \to Y_m$

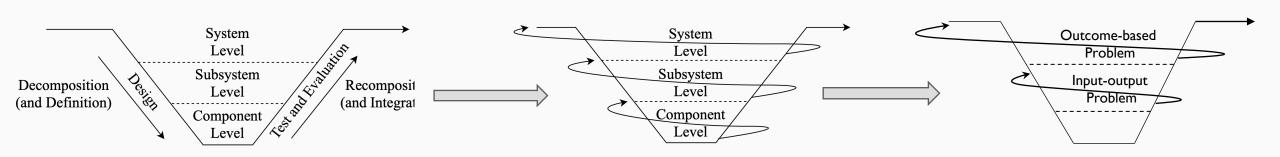
If: S is defined as $S \subseteq \times \{F_i | i \in I\}$

Let:
$$X = X_E \setminus M \& Y = Y_E \setminus M$$

We have: $S \not\subset \times \{X, Y\}$


Informationally Closed System

$$I\left(S_{\{n+1\}}^C; E_n^O \middle| S_n^C\right) = 0$$


$$I(S_{\{n+1\}}^C; E_n^O, S_n^C) = I(S_{\{n+1\}}^C; S_n^C)$$

Theorem I (Inequality for mutual information In closure):

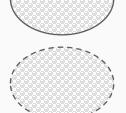
$$I(S_n^C; E_n^O) \ge H(S_{\{n+1\}}^C, S_n^C) - H(S_{\{n+1\}}^C, S_n^C | E_n^O)$$

Different Level of Abstraction in SE

Ashby's Law of Requisite Variety:

$$S ext{ is stable } \rightarrow Variety(S) > Variety(C)$$

$$Variety(O) \ge Variety(C) - Variety(S)$$

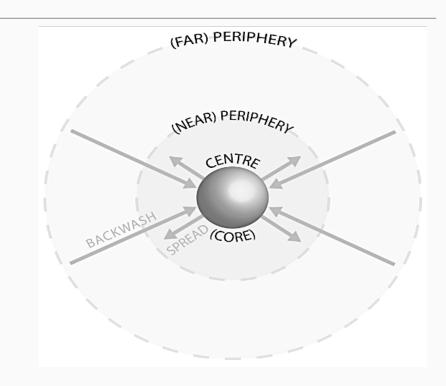

$$\min V_Z = \max(V_{X_E \setminus S} - V_Y, 0)$$

Law of Requisite Variety states that given $V_{X_E \setminus S}$, the minimum variety of outcomes min V_Z only decreases if V_Y increases.

Core And Periphery Precepts

Bounded Variety:

Unbounded Variety:



Residual Change:

$$R^{\frac{t,t'}{S}} = \{X^{t'} \backslash X^t, Y^{t'} \backslash Y^t\}$$

Consider a system S at time t and at a later time t', The core of S from t to t' is

$$C = \bar{S} \backslash R^{\frac{t,t'}{S}}$$

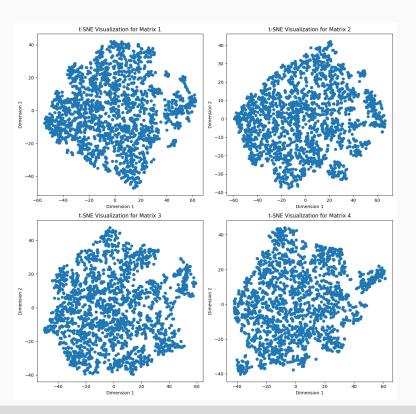
The **Periphery** of S from t to t':

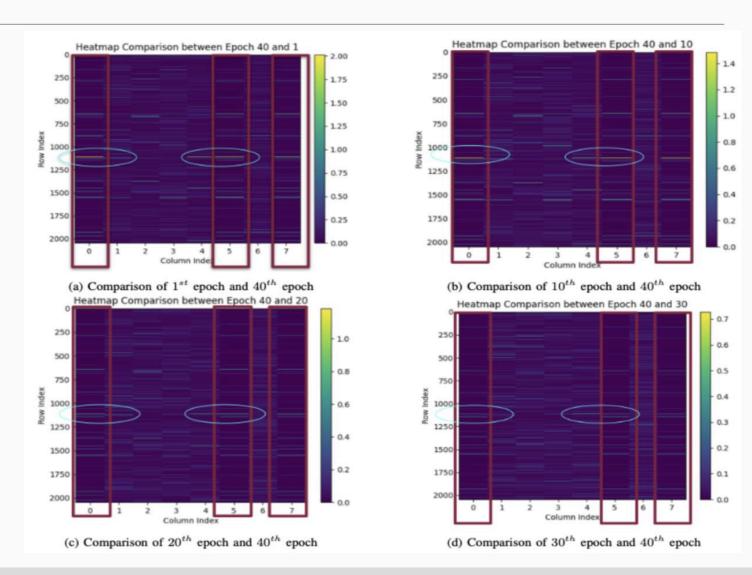
$$\mathcal{P} = R^{\frac{t,t'}{S}}$$

Evidence of Core And Periphery in Biological Intelligence

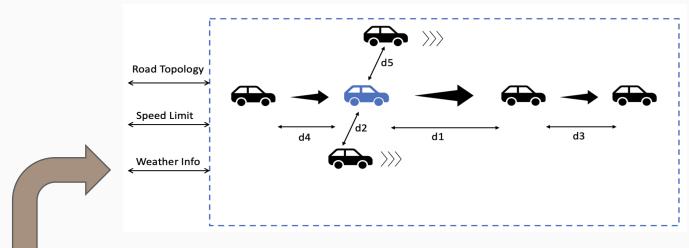
Homeostasis and Homeodynamics

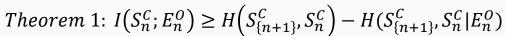
- Homeostasis: It refers to the body's ability to maintain a stable and balanced internal environment, despite external changes and fluctuations.
- Homeodynamics: It describe a state of dynamic equilibrium or balance within a biological system.
- Homeostatis variables → **core** homeodynamic variables → **periphery**

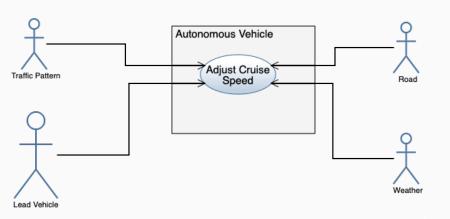

Belief and Attitude


- Attitude can transfer to belief and vice versa through the conduct of inquiry due to suspension of judgment.
- Belief → core Attitude → periphery

Evidence of Core And Periphery in Artificial Intelligence


ENGINEERED INTELLIGENCE


CNN (CFAR-10 and CFAR-100)



Example of Informational Closure in SE

Initial Modelling Assumptions:

$$I(S_n^C; E_n^O) = \{V_{limit}, R^0, W^0\}$$

$$I(E_n^O) = \{V_{limit}, R^0, W^0, RU\}$$

Calculation of Entropy in The Proposed Model:

$$H(S_n^C) = -\sum_{x \in S_n^C} P(x) \log P(x) = -\sum_{d_n^i}^{d_n^i} p(d_n^i) \log(d_n^i)$$

where:
$$p(d_n^i) = p(V_n^i, a_n^i, V_n^0, a_n^0)$$

$$H(S_{n+1}^C) = -\sum_{y \in S_{n+1}^C} P(y) \log P(y)$$

$$= -\sum_{d_{n+1}^1}^{d_{n+1}^5} p(d_{n+1}^i) \log(d_{n+1}^i)$$

where:

$$p(d_{n+1}^i) = p((V_{n+1}^i, a_{n+1}^i | V_n^i, a_n^i), (V_{n+1}^0, a_{n+1}^0 | a_n^0, V_n^0))$$

Final Calculation of Inequality:

First:
$$I(S_n^C, E_n^0) = H(S_n^C) - H(S_n^C | E_n^0)$$

Second:
$$H(S_{n+1}^C, S_n^C | E_n^O) =$$

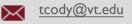
$$H(S_{n+1}^C) + H(S_n^C|E_n^O) - I(S_{n+1}^C; S_n^C|E_n^O)$$

Third:
$$H(S_n^C, S_{n+1}^C) = H(S_n^C) + H(S_{n+1}^C | S_n^C)$$

Application of This Research

- This research contributes to the theory of SE by providing formal definitions of the closed systems concepts, and variety at different abstraction levels of system (core and periphery)
- This research will help pave the way for systems engineers to build methodologies to engineer intelligent systems.
- This research provides an avenue to enable direct engineering of outcome-based problems
- This research proposes a concept that can help scaling and scoping intelligence property as a property of the whole.
- This research will provide a framework that introduces an additional layer of abstraction in SE of intelligent systems that can result in reduction of the number use-case models in the SE process.

Thank you


Niloofar Shadab

Advised by Peter Beling, Alejandro Salado

beling@vt.edu alejandrosalado@arizona.edu

Co-author: Tyler Cody

