Agile Engineering enabled
by Agentic Co-Modelers

Hart Traveller, ML Engineer, SysGit
Zeke Brechtel, CTO, SysGit
Steve Massey, CEO, SysGit

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com

€y SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Authoring: Manage Requirements &
Verifications, create MBSE models, generate
trace matrices, and track changes.

Infrastructure: Interact with Requirements
and System Models throughout the rest of
your technology stack using our Cl/CD mode,
our Python ORM,

or the SysML v2 API.

OMG Member

Automation: Fully -~
offline Al capability () M P Development
— Organization
accelerates the
processing of
engineering artifacts
into shareable System
Models.

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

TREAT HARDWARE AS CODE hello@susagit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com
https://docs.google.com/file/d/1sLJsJej6VyczVe8cZIHlTekZI4ZgjaLR/preview

TMSR-LF1 project

2011 SINAP establishes TMSR center

2018 Construction begins on a 2 thermal megawatt
prototype near Wuwei

2021 Construction completes three years ahead of
schedule

2023 Criticality reached

2024 The reactor reaches full power in sustained
operation

2025 Chinese scientists accomplished first online
refueling

2030 60 MWt (10 MWe) reactor planned

TREAT HARDWARE AS CODE

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Origins at Oak Ridge

More recent view of the reactor experiment

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

The original reactor worked.

MSRE at OI-?NL in Aircraft Reactor Experlment building

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Documentation is plentiful.

gglte TN

AEC RESH

3 4456 03L1185 7

OR)

ALT REACTOR PROGRAM
LY PROGRESS REPORT

ENDING SEPTEMBER 1, 1957

ﬂ/,

N NL-217§
PMENT REPORT <=~ ¥ st
M-3679 (20th ed. Rev.)

1554

B

DE NUCLEAR COMPANY

4 Union Carbide Corporation

TREAT HARDWARE AS CODE

MSRE into MSBR?

The Hopes for ORNL’s Molten Salt Reactor Program

By Murrav W. RoseNTHAL

N June 1, 1965, the last capsule of fuel was

‘added and the Molten Salt Reactor Experiment
at ORNL went critical. The event created consider-
able excitement at the Laboratory, not just because
it marked the completion of & complex undertaking,
but because it also represented a significant step
toward a major national goal: the achievement of
the breeder reactor. We felt in 1965 that the molten

breeder and that operation of the MSRE was a mat-
ter of national and world importance

Now, three years later, we believe molten salt
reactors look even more attractive, and our con-
fidence in their prospects has increased. This con-
fidence is based partly on our experience with the
MSRE and partly on some very favorable develop-
ments that have occurred during the past year.

Fall 1968

But first a brief review of the history of the molten
salt program: During the 1950’ when the United
States was attempting to develop a nuclear powered
airplane, one of the approaches explored was a re-
actor in which uranium as uranium tetrafiuoride
was dissolved in a molten salt which was a mixture
of other fluorides. A reactor using UF, as fuel was
operated at ORNL in 1954 as part of the Aircraft
Nuclear Propulsion Program.

Several years before the aircraft program was
terminated, the Laboratory had begun to realize
that the molten salt technology might be applicable
to civilian power plants. Studies between 1957 and
1960 indicated that molten salt reactors could be
low cost power reactors and probably could evolve
into very attractive thermal breeders. However,
there would be important differences between these

1

LEent

226

ORNL-4812

/A,z}él

The Development Status of
MOLTEN-SALT BREEDER REACTORS

August 1972

BISTRIBET™S 0F 11 2

MASTER

VEXT ISt e

The openmsr project
specifically maintains
repositories with extensive
documentation, CAD models,
and simulation code.

Nuclear Science and Engineering, 2 2 (February 1957).

article filename
NSE_moltenFluorides
NSE_ARE_Design
NSE_ARE_Physics

SE_ARE_Operation

Fluid Fuel Reactors, Addison-Wesley (1958).

part filename
FFR_part1
FFR_part2

FFR_part3

hello@sysait.io | https://susgit.io | https://prewittridge.com

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com
https://github.com/openmsr

Modern teams recreated the reactor with that documentation.

Secondary

Salt-air heat exchanger

Biological
shielding

Primary
Pump

Secondar
y drain
tank

Intermediate

- IR
heat exchanger i

il
Uinmpl
|
Reactor
Primary vessel
drain tank

TREAT HARDWARE AS CODE

hello@suysgit.io | https://susqit.io | https://prewittridge.com

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

A concrete objective

. .. Automated .
Existing MISR Modeling SysML Model Experimental
Documents Reactor
System

Success criteria for reactor:

1. Turns on.
2. Provides power.
3. Doesn’t blow up.

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

One possible approach

{ Existing MISR Documentation }

Provided to

In this case, we’re implicitly including LLMs that do/do
not have access to SysML documentation, and LLMs
that are/aren’t trained / fine tuned on SysML textual
notation.

[ChatGPT, Claude, Llama, etc... }

Directly
generates

[SysML Model }

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Syntactic and semantic quality metric details

SUMMARY A continuous value between 0 and 1 that validity of syntax / semantics in a SysML model.["2]
INTERPRETATION Higher is better. 1 means there are no errors. Less than 1 means the textual notation is invalid,
but the lower the value the worse. This is roughly akin to the percentage

Subtract P(Error | Token)®! from 1. Number of Errors Number of Tokens

Calculation float SSQ — 1 - (int ne / int nt)

attribute blips_and_chitz_budget = 3000 [flurbos]; SysML Input

* Validate SysML *used custom pilot wrapper * Tokenize SysML *used custom regex tokenizer
Couldn't resolve reference to Element 'flurbos' attribute | blips_and_chitz_budget a 3000 n n a
Count Errors Count Tokens

1(l/B)

[1] This metric isn’t a ’percent valid’ metric - the minimum value isn’t necessarily 0, but go below O there would need to be more errors than tokens.
[2] The metric is continuous to help rank different strategies, and to function as a feedback signal.

[3] The error count is divided by the token count to normalize the error rate; this accounts for varied sysml input / translator output lengths.

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Syntactic and semantic validity metric validity
[computed across n sample outputs]

SUNMMARY A value between 0 and 1 that measures the percent of outputs without syntax errors.

INTERPRETATION Higher is better. This metric is akin the probability that the output code generated is syntactically valid.
RATIONALE No errors is a soft requirement for code in production environments; SSV < 1 should disqualify a generation system.
CALCULATION The average floor of the Sq metric for each output in the sample.

80 Outputs w/o Errors

100 Inputs Translation System 0.8

100

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Syntactic and semantic quality and validity

Quality=1-(ne/nt)=1-(0/35) =10 Quality =1- (ne/nt) =1- (38 /86) = 0.558

private import SI::*; function LRODesign(orientationToSun: Orientation) : Design
private import ISQ::*; function SunOrientedMode() : Mode
requirement 'LRO Radiometric Doppler Measurement Accuracy Requirement' { function CalculateSunDirection() : Vector3D
doc /*
LRO and its GDS shall achieve a radiometric doppler end
measurement accuracy of less than 1 mm/sec. function RotateLRO(direction: Vector3D) : Design
Y
attribute measurementAccuracy : LengthValue; end
require constraint { measurementAccuracy < 0.001 [m/s] } var sunDirection = CalculateSunDirection()
return RotateLRO(sunDirection)
end
var modes = {NormalMode(), SunOrientedMode()}

Quali‘tl_.] =1- (ne/nt) =1 - (3 / 22) = 0.864 function FindSunOrientedMode() : Mode

end
if (FindSunOrientedMode())
modes.add(SunOrientedMode())
return Design(modes)
end

requirement def LRODirectLunarTransfer {
doc "The LRO shall utilize a direct lunar transfer trajectory."
subject LRO : Lander;
require constraint { LRO.transferTrajectory == 'Direct Lunar Transfer' }

Total of 38 errors...

2:5 no viable alternative at input 'doc'

2:9 mismatched input '"The LRO shall utilize a direct lunar
transfer trajectory.”' expecting RULE_REGULAR_COMMENT Validitg - 1| / 3 - 0 33
[] (XX

4:5 missing EOF at 'require’

TREAT HARDWARE AS CODE | hello@suysgit.io | https://susgit.io | https://prewittridge.com 6 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

LRO syntax and semantics input data

Lunar Reconnaissance Orbiter (LRO) Project
Mission Requirements Document

430-REQT-00011
Revision (-)

Effective Date: TBD
Expiration Date: TBD

Prepared by:

CHECK WITH RLEP DATABASE AT:

National Aeronautics and . i i
Space Administration http:/vsde.gsfc.nasa.gov/index.jsp
TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.
TREAT HARDWARE AS CODE

hello@susgit.io | https://susait.io | https://prewittridge.com

Example Requirements

LRO’s launch mass shall not exceed 1480 kg.

LRO shall fit within a 9.5 ft (diameter) fairing.

The orbit inclination shall be 90 degrees +/-1
degree.

LRO shall be designed to have a minimum
mission duration of 14 months.

The LV shall despin LRO to a rate < 2 rpm.

The launch vehicle must be capable of
delivering a 1480 kg payload to a trajectory
with a C3 > -1.85.

LRO and its GDS shall achieve a radiometric
doppler measurement accuracy of less than 1
mm/sec.

€y SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Quality metric result

KDE: Syntax Quality (With vs. Without Context)

With Context
No Context

0.2 0.4 0.6 0.8 1
Syntax Quality Metric

TREAT HARDWARE AS CODE hello@susagit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Validity metric result
Percent of Outputs w/o Errors by Model

Claude 3.7 -

Model

Llama 3.2

Mistral 0.3

o_

| 1 I
0.2 0.4 0.6 0.8
% Successful

TREAT HARDWARE AS CODE

hello@suysgit.io | https://susqit.io | https://prewittridge.com

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

A refined approach

Information |

Retrieval
Methods
~
Existing MSR 'Ir\‘"teél"‘-’ll.e“t SysML Model Nuclear
Documentation odeling Interface Reactor
System
/ /
: * : If the SysML model wouldn’t be a
;I.alldlatl.on / working nuclear reactor, we want to
Imu at',o n/ be able to reject it, and force the
Execution . . .
Engine intelligent system to re-evaluate it

an update it.

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Our primary focus

Information
Retrieval
Methods
\
S Intelligent
Existing MSR : . SysML Model Nuclear
Documentation ST Interface > Reactor
System
J
: + : If the SysML model wouldn’t be a
;I.alldlatl.on / working nuclear reactor, we want to
imulation / be able to reject it, and force the
Evaluation . . .
Engine intelligent system to re-evaluate it

an update it.

TREAT HARDWARE AS CODE hello@susait.io | https://sysgit.io | https://prewittridge.com 6 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Grammar for parser

// ! TriggerExpression: TriggerInvocationExpression: kind: ("at" | "after") ow
// * TriggerExpression: kind: ("at" | "after") ArgumentMember | ownedRelations
// trigger_expression: (trigger_expression_kind_1 argument_member) | (trigger_ex
ltrigger_expression_kind_1: "at" | "after" -> kind
Itrigger_expression_kind_2: "when" -> kind
trigger_expression: (trigger_expression_kind_1 expression)

| (trigger_expression_kind_2 expression)

WHITE_SPACE: /I[\sl+/
SINGLE_LINE_NOTE: /\/\/[~*].*\n/
SINGLE_LINE_NOTE_EOF: /\/\/["*].*$/
MULTILINE_NOTE: /\/\/*[\S\sl*?*\//

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 6 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Intermediary graph representation

Directed Graph
245 nodes
732 edges

Search a node

legend - it

Node labels
node_label kwarg

Node colors
color attribute

Node sizes
size attribute (scaled to 3-15
px)

Edge colors
color attribute

Edge sizes
raw_edge_size kwarg

Edge labels
__labels__ attribute

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Graph/node methods for information retrieval and mutation

@t.overload
def select
self,
kind: type[T_Element] = Element,
specializations: bool False,
-> list[T_Element]: ...
@t.overload
def select
self,
kind: t.UnionType,
specializations: bool
-> list[t.Any]:
def select
self,
kind: type[T_Element] | t.UnionType = Element,
specializations: bool = False,
—> list[T_Element] | list[t.Any]:

Select all the elements in a model by the kind of element.

Args
kind
The kind of element to select.
specializations

Whether to include specializations of the element.

Returns
list[T_Element] | list[t.Any]
A list of elements of the provided type.

return list(self.select_iter(kind, specializations)

TREAT HARDWARE AS CODE

def documentation

self,
to: NodeIdentifier | Node | None =
*r
declared_short_name: str | None = None,
declared_name: str | None = None,
locale: str | = None,
body: str | None = None,

—> Documentation:

Add documentation to a model. Documentation documents it's owning namespace,
so if documentation is added to 'A::B', then that documentation pertains to
the element 'B'.

Args
to The node to add the documentation at
declared_short_name The short name, if any.
declared_name The declared name, if any.
locale The locale, if any.
body The documentation body, if any.

Returns
Documentation: The linked documentation node.

parent = self.m.get._namespace_or_root_or_self(to
member = parent.add.documentation
declared_short_name=declared_short_name,
declared_name=declared_name,
locale=locale,
body=body,

self.m.run_callbacks
return member

hello@suysgit.io | https://susgit.io | https://prewittridge.com %

@

SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

SysML standard compliant class hierarchy

class Feature(Type):
direction: FeatureDirectionKind | None = None

11! standard
direction : FeatureDirectionKind [0..1]

Indicates how values of this Feature are determined or used (as specified for

@property

5 _ _ _ And why not serialize code
ef type(self) —> list[Typel: . K .
inside nodes with references to
!l standard
/type : Type [0..*] {ordered} gIObaI State?

Types that restrict the values of this Feature, such that the values must b
instances of all the types. The types of a Feature are derived from its typ
and the types of its subsettings. If the Feature is chained, then the

types of the last Feature in the chain are also types of the chained Featu

result = t.cast
list[Typel,
self.find_successors_by_edge(link_in_edge_filter[Link.typel),

result = sort_by_index(result
return result

TREAT HARDWARE AS CODE

hello@sysait.io | https://susgit.io | https://prewittridge.com

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Serialization algorithms to convert graph structure back into SysML

model = sysml.read("./example.sysml")
2 model.print(

v/ 0.0s

package SimpleRequirement {
requirement def <'1.1's SpacecraftMass {
doc /x
The spacecraft mass shall be less than 200 kg.
*/
}
requirement def <'1.2'> SpacecraftPayloadVolume {
doc /x*
The spacecraft shall have a payload volume of 100 cubic meters.
*/
}
package ExamplePayload {
requirement <'1.3'> PayloadExample {
doc /*
The payload shall be designed for low earth orbit.

*/

TREAT HARDWARE AS CODE hello@sysait.io | https://susgit.io | https://prewittridge.com

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Validity metric result
Percent of Outputs w/o Errors by Model

Claude 3.7 -

Model

Llama 3.2

Mistral 0.3

o_

| 1 I
0.2 0.4 0.6 0.8
% Successful

TREAT HARDWARE AS CODE

hello@suysgit.io | https://susqit.io | https://prewittridge.com

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Piggyback on existing Al / scientific computing language

'NumP W |:5| pandas

LangChain

@ Sc’Py P Pydantic

N Pygments

Python syntax highlighter

TREAT HARDWARE AS CODE | hello@sysait.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

TREAT HARDWARE AS CODE hello@susagit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com
https://docs.google.com/file/d/1Xd7FqHDV1z6hAXQKIqEONgVhJZxMW5sJ/preview

@& QuickTime Player File Edit View Window Help ¢ 4) 3 7T 1woxwa Y+ TueAug19 17:08

D Satellite System Package - Branched A e e ®

Can you create a package for a satellite system, add requirement for its mass in the package, and then add some
documentation to the requirement that explains its purpose?

#. Generate Al Response (¥%R)

LM Studio 0.3.23

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com
https://docs.google.com/file/d/195nDP4PGmBxOXK1Ji2gpKiVAh65jAxP_/preview

Issues, metrics, and vision

Syntactic and semantic validity (distinguishable) [Solved]
Physical/quantitative validity

Output correctness / determinism (distinguishable)

Information isomorphism

Model connectedness/simulatability

Information (de)duplication (in source material and in sysml model)
Information deconfliction

Traceability (to source material and for agent decisions)

Model fidelity

(Fuzzy) Model organization

(Fuzzy) Convention correctness

(Very Hard) Physical realizability

Speed and scalability

Review Ul for human in loop

Plug and play framework for building agents that create good SysNML models
And even if none of the agentic stuff works, there’s still a very useful tool for working with
SysML at the end anyways!

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 6 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Extra details on script

If requested...

TREAT HARDWARE AS CODE hello@susgit.io | https://susait.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Inventive systems are not (currently) our objectivel’

Input Prompt Output Modell®

package VehicleModel {

2 1] 1] . 1] i i sk

Make me a car. Inventive LIRS 1 FE

. private import Time::*;

Inte"lgent private import ScalarValues::*;
part def Vehicle {
SgStem attribute totalMass : MassValue;
attribute dryMass : MassValue;

attribute cargoMass : MassValue;
attribute currentVelocity : SpeedValue;

attribute currentAcceleration : AccelerationValue;
attribute availableElectricalPower : PowerValue;

° Creating a system that can invent entirely new technology/systems is not attribute brakePedalDepressed : Boolean;
our objective. // presumably the model would continue here
° Note that we didn’t mention mass, velocity, acceleration, etc, in the input) i
prompt.

. . // that code is omitted for brevity
° The key point here is that a lot of stuff was added.

[1] We’re not saying that the objective can never be a system that can independently invent new and working technology. We’re simply saying that this isn’t our current objective.
The full reasons why are out of scope, but it comes down to task complexity (it’s very hard, possibly on the scale of centuries instead of funding rounds), vagueness of the target
market, the fact that current LLMs are (debatably) not up to the task (as LLM creativity is more or less akin to probabilistic walk through a space of tokens, and not a deeper
reasoning process, whatever “reasoning” really is), among other reasons - but this is a footnote and not an essay so I'll leave it at that.

[2] This is the SysML v2 Spec Annex A SimpleVehicleModel.sysml model from the official release, not LLM generated code.

TREAT HARDWARE AS CODE hello@susait.io | https://sysgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/sysml/src/examples/Vehicle%20Example/SysML%20v2%20Spec%20Annex%20A%20SimpleVehicleModel.sysml

Inventive vs. Translative

Create a flashlight.

package Flashlight {
attribute def OnOffCmd;
attribute def Light;
port def OnOffCmdPort {
out on0ffCnd : OnOFfCmd;
}
port def LightPort {
out light : Light;
}
part context {
part user {
port on0ffCndPort : OnOFfCmdPort;
perforn illuninateRegion.sendOn0ffCmd {
out onOffCmd = onOffCndPort.on0ffCmd;
}
}

interface userToFlashlight connect user.onOffCmdPort to flashlight.on0ffCmdPort {

[
ref flow references illuminateRegion.on0ffCmdFlow from source.on0ffCnd to target.onOffCnd; p a C ka g e F l a S h l 'Lg h t)
}
part flashlight { ’

port onOffCmdPort : ~OnOffCmdPor
perforn illuninateRegion.produceDirectedLight {
in on0ffCnd = onOFfCmdPort.on0FfCnd;
out light = lightPort.light;
3
}
port lightPort : LightPort;
3
part reflectingSource {
port lightPort : ~LightPort;
perforn illuminateRegion.reflectLight {
in light = lightPort.light;

This isn’t a binary category so much as a spectrum.

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

’Inventive” Intelligent Systems

Can you create an ISR satellite system? It uses a launch vehicle provided by SpaceX.

package SatelliteSystem {
doc /*
This model represents an ISR (Ionospheric Sounding Research) satellite systenm.
*/
part def LaunchVehicle;
part lv: LaunchVehicle = "falcon 9";

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Information Isomorphism

Can you create an ISR satellite system? It uses a launch vehicle provided by SpaceX.

package SatelliteSystem {
doc /*
This model represents an ISR (Ionospheric Sounding Research) satellite systenm.
*/
part def LaunchVehicle;
part lv: LaunchVehicle = "falcon 9";

And where is the reference to SpaceX?
And (perhaps nitpicking) but the only reference to *ISR” is in the doc?

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 6 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Statement Discretization

Can you create an ISR satellite system? It uses a launch vehicle provided by SpaceX.

There is an ISR satellite system.

The ISR satellite system uses the
launch vehicle.

There is a launch vehicle.

The launch vehicle is provided by
SpaceX.

IMPLIES

Launch vehicles can have providers.

13 Mar 1996

Cmp—lg/()()lBOO}

CLAW 9, The First International Workshop on Controlled Language Applications, Katholieke Universiteit
wen, 2627 March 1996

Attempto Controlled English (ACE)

Norbert E. Fuchs, Rolf Schwitter
Department of Computer Science, University of Zurich
CH-8057 Zurich, Switzerland
{fuchs, schwitter)@ifi.unizh.ch

Attempto Controled English (ACE) allows domain speciaists to interactively formulate requirements
pecifications in domain concepts. ACE can be accurately and efficiently processed by a computer, but is
hpressive enough to allow natural sage. The Atempt systom translates specification texts in ACE
into discourse representation structures and optionally into Prolog, Translated specification texts are
incrementally added to a knowledge base. This knowledge base can be queried in ACE for verification,
and it can be executed for simulation, prototyping and validation of the specification.

1 Motivation

Somewhere between ridiculous pedantry and erroncous formulation there presumably exists a
reasonably precise way of specifying a problem in English [Dodd 90].

Creating reliable software is hard. One of the worst obstacles to build a good software
product grows out of shortcomings in writing a complete, consistent and
unambiguous requirements specification. Managers and domain specialists often find
it extraordinarily difficult to formulate specifications since at the beginning of the
requirements engineering process the knowledge is usually informal, incomplete and
opaque, and many possibly conflicting — personal views of the system exists. Nobody
knows what exactly the program should do until there exists a first version to run
Requirements specifications are mostly written in natural language because they need
to be understood by all participants. This involves a risk since the expressive power of
unrestricted natural language can tempt people to write ambiguous or even
incomprehensible statements. Apart from natural language people use arbitrary
graphics, or semi-formal representations like structured analysis or entity-relationship
diagrams that often have no formal semantics, or a poorly defined one, thus making
formal reasoning impossible [Pohl 93]

Even when the software development team gets an acceptable requirements
specification there can be problems because different people may understand the same
document differently. To avoid disparate interpretations of a document, people have
suggested to use formal methods [Hall 90]. However, formal languages are not easily
understood by untrained users. Moreover, it is far from trivial to derive a formal
specification from informal requirements since this derivation process cannot be
formalised and cannot be formally validated [Hoare 87]. In the end, natural language
comes back in through the mk oot when the formal spe
accompanied by a natural lany
o i real-oord forms and oy the speciichtion say /~ it o docs: [Hall 90, 1t seens that
introducing formal methods into the predominantly creative process of software
development runs into immense difficulties.

But there is a way out. The specification language Attempto Controlled English (ACE)
combines the familiarity of natural language with the rigor of formal languages. ACE
enforces writing standards that restrict the grammar and the vocabulary, thus leading
to documents containing more predictable and less ambiguous language. ACE helps
people to find an agreement about the correct interpretation of a requirement
specification. When domain specialists and software developers are guided fo use the

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com

€y SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com

Note: Inventiveness is hot the same as Hallucination

The former relates to the addition of information, the latter relates to the inclusion of incorrect
information.

Inventiveness

The tendency to add information to an output (correct or incorrect) that was not in the input. This
seems to co-occur with the omission of input information in an output, but that is a separate issue.

Hallucination

... overconfident, plausible falsehoods, which diminish [the LLMs] utility and trustworthiness.
Definition Source: Why Language Models Hallucinate (OpenAl, arxiv.org, 2025)

TREAT HARDWARE AS CODE hello@suysgit.io | https://susgit.io | https://prewittridge.com 9 SysGit

mailto:hello@sysgit.io
https://sysgit.io
https://prewittridge.com
https://www.arxiv.org/pdf/2509.04664

