

A New Test & Evaluation Regime for Human-Al Systems

Aditya Singh, Zoe Szajnfarber

September 17, 2025

Motivation: New Needs for T&E

T&E has focused on the performance and reliability of the technical artifact

How the Patriot missile system works

Radar

Scans sky to detect and locate incoming enemy threat

Control station

Guides missiles to target and can alter timing of detonation

Missile launcher

Holds up to 16 missiles, which can be fired in less than nine seconds

But not on how that artifact is integrated with operators, which may affect performance

Source: Netherlands Ministry of Defense

Source: Raytheon Technologies

Research Gap

Steps in Al Development & Deployment Process

Data

Model Development

System Testing

Societal Impacts

Research areas

Bias, poisoned data, etc.

Researchers

- Social science,CS academia
- New ML
 Techniques
- Frontier Labs,CS academia
- Alignment, Mechanistic interpretability, etc.
- Frontier Labs, CS academia

- Trust in AI, future of work, model security
- Humanities academia, think tanks,

Al Integration into Human Work Systems

- > Research often fails to consider *how* 'Al' is integrated into workflows
- How do different integrations of humans and AI change system outcomes?

Human-Al System Architecture is a Choice

Architecture is a decision about 1) function allocation 2) relationship b/w H&Al

Options are much broader than humans supervising AI or AI decision aides

Policy, Architecture, & Design Where is the Line?

Policy Level A human must have supervisory authority over any AI system's decision to use deadly force Al Suggests a Plan **Human Must** Implements **Architecture** of Action Approve Level Action Human Approver Architecture Object classified Object moving towards base at 500 mph. No friend or foe as a target signal received. 1 min till it (1 min till it hits) Design Level reaches base area.

Do Not Fire

Bad Design

Do Not Fire

Better Design

Fire

GW/74 Prior Work

Research Setting: Minefield Traversal

Using the framework, we modeled several architectures which determined how tasks were allocated between humans and AI and how they worked together

Mine presence may be predicted by sending a UAV to collect data about the road.

Classification

Human or AI reviews footage, classifies as clear/not clear at some level of confidence

Routing

Human or AI selects which road the UGV should go down

Al is faster but highly variable across terrains; Human is slower but less variable across terrains

Repeat process until reaches destination

Architecture Implementations in Simulation Environment

Classification Both Routing

Human Approver

Human must approve Al classification, reassign if confidence is too low

Human-Al Team

Classification split up by terrain to take advantage of comparative advantages

Al-on-the-Loop

Al can override human classification if it is more confident in its classification

Human Only (Baseline)
Human does all classification

Human Approver

Al-along-the-Loop

Human can delegate classification / routing decision to Al

Al Only (Baseline)

Al does all classification / routing

Human Approver

Strategic: Al presents recommended route to execute, human can override for a safer route

Tactical: If a road is classified as unclear, human must approve divergent road choice

Human Selector

Strategic: Al presents possible routes to execute, human selects Tactical: If a road is classified as unclear, Al presents all possible next roads, human selects

Human-along-the-Loop

Al can delegate decision between roads of similar expected travel time to human

Executive Command

Human can provide Al with guidance on how to operate (conservatively or aggressively)

Command by Veto

Human can override a routing decision but is not required to act

HAI Simulation Set-up

Variables

Treatment: HAI Architectures

Environment: Map size Terrain IED density

+

Human and Al confidence

Simulation Testbed

FOMs

HAI's Non-Linear Tradeoffs

Robustness of Results to Context

Importance of Training on Interaction

- ➤ Architecture, Environment, and their Interaction are all significant
 - ➤ All three were statistically significant in ANOVA tests
- ➤ Change in performance across environmental conditions was not uniform, consistent, or obvious
 - ➤ Seemingly innocuous changes in operating environment (increasing map size with same IED density and confidence) led to large changes in relative performance for some architectures

Implications for Test & Evaluation

- ➤ Need to expand system boundary of T&E to consider human-Al architecture & interaction
 - ➤ Changing just *how* the human is integrated significantly changed results while holding the technical performance constant
- ➤ Human-Al systems testbeds can:
 - > Reveal non-obvious tradeoffs and interactions
 - >Understand how changing variables affect system outcomes
 - ➤ Identify which architectures that are robust / sensitive to expected operating environment

Thank You

asingh25@gwu.edu

GW/7-1 Classification Architectures

Human-Al Team

Leverages complementary strengths based on historical performance

Human Approver

Threshold adjusts dynamically: decreases per correct AI decision (building trust), increases 20% after IED encounter (betrayal).

Human-along-the-Loop

Simple rules-based system with fixed threshold, reassigns low-confidence cases to human expert.

Al-along-the-Loop

Models paranoia that increases with consecutive "clear" classifications. Paranoia resets when mines are found or roads marked unclear.

Al-on-the-Loop

Al monitors and only overrides when it disagrees AND has significantly higher confidence (+10% margin).

Routing Architectures (Strategic vs Tactical)

Generate 3 Routes

Human makes decisions about what type of route should be executed

Human Approver (Strategic)

Human can substitute a safer path (more favorable terrain) if expected travel time is within 15% of shortest path.

Human Analyzes Options

Select Best Route

 \rightarrow

 \rightarrow

Execute Route

Human Selector (Strategic)

Route Options: 1) Shortest path, 2) Al-favorable, 3) Human-favorable. **Selection Logic:** Human-Al Team → shortest path. Al-dominant systems

Selection Logic: Human-Al leam → snortest path. Al-dominant system

 \rightarrow AI-favorable. Human-dominant systems \rightarrow Human-favorable.

Human makes decisions when an issue occurs

Human Approver (Tactical)

If confidence is low, human selects next appropriate road classified as clear with highest confidence.

Human Selector (Tactical)

Human weighs expected travel time, progress toward goal, and AI classification performance in different terrains.

Routing Architectures (Only One Implementation)

Executive Command

Human adjusts AI behavior. Conservative mode prioritizes roads where AI has high classification confidence over pure expected value. Aggressive mode emphasizes progress toward end node over safety margins

Human-along-the-Loop

If Blocked → Scan All Roads

Calculate Expected Times

Check for Close Call

Close Call (≤10min diff) → Human Decides

Clear Winner → Al Selects

Select Road

When two or more road options have expected travel times within 10 minutes, AI delegates to human expertise. Human Selects the road classified as clear with highest confidence level that makes progress toward destination.

Command by Veto

Al Classifies Roads → Al Selects Lowest Expected Time

Human Reviews Choice

Check Next-Lowest EV Road Terrain

Next road has more certain terrain → Veto Al Choice

No better terrain certainty → Execute Al Choice

Select Road

Human can reject Al's lowest expected travel time choice if the next-lowest EV road has more certain terrain type for Al classification but is not required to act for Al to operate