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1 System Safety Analysis (SSA)

 Safety is prevention of fatalities, injuries, property damage, financial
losses

e SSA is structured process for identifying, analyzing, and mitigating
hazards in complex engineered systems throughout their lifecycle

e SSA supports early identification of design flaws, latent failures, and
unsafe interactions across subsystems and human operators

e “Safety must be designed into the system from the beginning, not

added as an afterthought.”
— Leveson (2012), Engineering a Safer World

Leveson, N. G. (2012). Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press.



1 Importance of SSA

* Reduces cost and time by catching hazards early in the design phase
* Increases public trust, system reliability, and mission assurance

» Supports certification and compliance with regulatory standards (e.g.,
MIL-STD-882E, ARP4761)

* Regulatory standards designed to protect public from deploying and
operating unsafe systems




1 SSA Artifacts in the Life-cycle

e Concept Phase: Preliminary Hazard Analysis (PHA)

* Design Phase: FTA, FMEA, STPA, model-based hazard simulations
» Test/Validation: Verification of safety requirements

* Operations: Continuous monitoring and feedback loops



1 Integration of SSA and SysML-based MBSE

 MBSE (using SysML) is structured framework for modeling
requirements, behaviors, structure, and parametrics of complex
systems

e SSA can leverage these models to trace hazards, validate safety
requirements, and analyze failure propagation early in the lifecycle

* "Integrating safety analysis into SysML models provides visibility into
design risks and supports traceable safety assurance." — Friedenthal
et al. (2014)

Friedenthal, S., Moore, A., & Steiner, R. (2014). A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann
Thomas, J., Fleming, C. H., & Leveson, N. G. (2021). "STPA Handbook." MIT Partnership for Systems Approaches to Safety and Security.



1 System Engineering and System Safety Artifacts
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1 Organizational Structure
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1 System Engineering and System Safety Artifacts
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nefficiencies in Separating SSA and System
Design

e SSA work on old designs
* Errors introduced in “interpretation” of designs
* Inability to make design tradeoffs



Risk Analysis and Assessment Modeling
Language (RAAML)

* A SysML-based profile developed by the Object
Management Group (OMG) N

\Q\ RAAML
* FTA (Fault Tree Analysis) M IODELING LANGUAGE

e STPA (System-Theoretic Process Analysis)

* RBD (Reliability Block Diagrams) ani;"‘e‘l\i:g'{zi:gau"adggs(’;‘;s:&“f)“t

Libraries and Profiles

Version 1.0

e Extends SysML with stereotypes for:
 FMEA (Failure Modes and Effects Analysis)

* Integrates risk analysis directly into the model-
based systems engineering (MBSE) workflow. S S— S ————

° prOVIdeS a Standa rdlzed Way tO mOdel Safety and Standard document URL: http://www.omg.org/spec/RAAML/
reliability analysis artifacts within a SysML model

11



Example RAAML B

| - pressureSensor: Sensor
| - actuator: Actuator |

* BrakeControlUnit is a system .
component modeled with SysML | <armatimene |
Bloc | Pressuresersor |

. o | <<FailureMode>>: |

* PressureSensor is annotated with | *sensorstuck high" |
<<FMEAElement>> for risk modeling

* A Failure Mode (Sensor stuck high) is T —
linked directly to the component oo

* An FTA (Fault Tree Analysis) is T
constructed using <<FTAEvent>> and S
<<LogicGate>> stereotypes to model PR
the hazard “Loss of Braking” o

* FTA shows how component failures R
propagate to system-level hazards b | | <erTabeertss |

| SensorFails | | ActuatorFails |

4. + + +
t + t




1 Integration of SSA and SysML based MBSE

* Enables bidirectional traceability

between safety artifacts and ==
system models

PERFORMANCE \ (AFETY

SYSTEM VY

' MODEL
* Enables automated analysis of
safety models

SYSTEM MODE!

Friedenthal, S., Moore, A., & Steiner, R. (2014). A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann
Thomas, J., Fleming, C. H., & Leveson, N. G. (2021). "STPA Handbook." MIT Partnership for Systems Approaches to Safety and Security.
Thomas, J., & Leveson, N. (2013). "Performing STPA withSysML." MIT Partnership for Systems Approaches to Safety and Security (PSASS).

Eames, D. P., & Steiner, R. (2017). "Bringing Safety-Critical Systems into MBSE." INCOSE International Symposium, 27(1), 477-489
JPL/NASA. (2021). OpenMBEE User Guide https://openmbee.org/

Lucio, L., et al. (2021). "Collaborative MBSE with OpenMBEE: A NASA Use Case." INCOSE IS 2021 Proceedings 13
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2 Example: SysML and SSA

CON-OPS DESIGN COMPONENTS

i Ll ', r
Pitot Tube F Igl'lt Contnl Compute
"'I Sorvormotar
Crive Shaft Fosition Sansor
[ ] l.'1|-
D I a G bl
GPS & Compass [luter Fosition Sensor
Pootg
. Innar Position Sensor
4 — -

Hazard:
Loss of (Flight)
Control (LOC)
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Example: SysML and SSA

bdd [Package] Structure[ FCS Logical Decomposition ]/J

«block»
FlightControlSystem
ctrlSub actuator

«block» E

«block» E

ControlSub Actuator
e i
primaryl backup monitorArbitratel
«block» g «block» E

Controller

MonitorAndArbitrationModule

16



2 Example: SysML and SSA

fﬁct [Activity] FCS Operation[ FCS Operation ]/J

i «allocate» :
: ctrlSub : ControlSub :
I e e R L L e L L e L £
E wallocate» ; uallocate» «allocate» i
E primary : Controller backup Controller Emanitorhrbitrate 3 ManitorAndArbitratiunModuleE
T s s s s SO OO OO . s s s LSSV PO L o em st etttk s st s stk s s ] £

Generate
Actuator Command

Monitor &

wallocate»

actuator : Actuator

: Actuate Flight

Arbitrate

J

Generate
Actuator Command

Control Surfaces

)

17




2

Example: SysML and SSA

ibd [Block] FlightControlSystem|[ FCS_Flat ]/J

from

ctrlSub : ControlSub

primary : Controller

| Primary :

|A|
v
to_MandA : Controller-MandA

>

~Controller-MandA

backup : Controller

[&]
v

to_MandA : Co

from_Backup : ~Controllg

ntroller-MandA

r-MandA

ki L]
monitorArbitrate : MonitorAndArbitrationModule
[~
v
to_Act : ~Actuator-Control
A
v
to_Act : ~Actuator-Control
from_Ctrl : Actuator-Control
A
L]

actuator : Actuator

18



2 Example: SysML and SSA

Loss of Control P_LOC = (P_Actuate_Control_Surfaces +
P_Flight_Control) -
a (P_Actuate_Control_Surfaces *

P_Flight_Control)

P_Flight_Control =

P_Monitoring & Arbitration +

ACt“?te Control Flight Controls P_Flight Control - (P_Monitoring &
Surfaces Fails Fail Arbitration * P_Flight Control)

o O
P_Flight Control =
P_Primary * P_Backup
ibd [Block) FlightControlSystem [ FCS_Flat ])
ctrlsub : ControlSub fvliu ! Ii to i”s dal Id
th Arbitration Both Controllers
MeduteFats Fail
o undh - Controtir-anda o cobtratteranss Note: Assumes independence and no
common cause or shared hardware
from Primary : ~Controller-MandA from_Backup : ~Controlldr-MandA
’ H; & <zo
i}
' to_Act ~Actuator-Control
'H!
|to_act : ~actuator-Control
Yy
from_Ctrl : Actuator-Control H
Flight Control- Flight Control-

Primary Backup




2 Example: SysML and SSA

* Failure: Actuate Control Surfaces
Hazard: Loss of (Flight) Control * Failure: Flight Control

* Failure: Monitor & Arbitrate

a % Causes of Loss of Control

a e Failure: Flight Control Primary and Flight Control — Back Up

Loss of Control
ibd [Bleck] FlightCentrolSystem[ FCS_Flat ]J

i ¢ controtse h P_LOC = (P_Actuate_Control_Surfaces +
_ P_Flight_Control) -
primary : Controller backup : Controller - - %
H ' Attt (P_Actuate_Control_Surfaces
+ ) H. FlightControls - — -
to_MandA : Comtroller-Manda to_MandA : Coftroller-MandA Su;f::t:?_{];:a Fail P_F/Ight_Control)

P_Flight_Control =
P_Monitoring & Arbitration +

fram| Primary : ~Controller-Manda from_Backup : ~Controlldr-Manda » 0

) "
L M| v |
monitorfrbitrate : MonitordndArbitrationModule P F/Ight COI’IlTO/- (P Monltoring &
m . . . . »
i Monitoring Arbitration * P_Flight Control)
to_Act ~fctuator-Control -
and Both
> Arbitration Controllers Fail
to_Act @ ~Actuator-Control Module Fails )
from_ctrl : Actuator-Control P_Fllght ContrOI =
- P_Primary * P_Backup

actuator : Actuator l

Flight Control- Flight Control- .
orimary S Backup Note: Assumes independencgand no

common cause or shared hardware




2 Challenges

N o Uk W

Representing Fault Trees in SysML

Deriving FT from BDD, AD, and IBD

Connected Models for Bi-directional Traceability (FT, BDD)
Uncertainty Quantification for Fault Trees

Interval Analysis for Fault Trees

ldentifying Common Cause Failures in Fault Trees
Calculating Top-Level Prob for FTs with Common Cause
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3-1 Representing FT in SysML — FT Templale

par [Block] FaultTreePattern[ Failure Probability Estimate ])

/failureProbability : Real |

result

L]

«constraint»
:0r

A

inputbrdbabilities [*]

l

Real | leafNodeFailureProbability :

/orSubsFailureProbability :

Real [1] |

/andSubsFailureProbability :

Real |

result

L]

«constraint»
:0r

[] ‘

inpufﬁrobabilities [*)

orSubs : FaultreePattern [*]

rh

/failureProbability : Real ‘

result

[]

«constraint»
:And

[]

ihputProbabilities ]

andSubs : Faul{TreePattern [*]

th

/failureProbability : Real

Parametric Diagram
FaultTree Pattern

Provides SysML template
for capturing a Fault Tree

bdd [Package] Constraints & Patterns [ Fault Tree Pattern Definition ],J

Dr Matt Amissah, 2025

«block» g
FaultTreePattern
constraints
andSubs | : And
* : Or
¢ Or
values
orsubs failed : Boolean = False
* leafNodeFailureProbability : Real [1] = 0.1
/failureProbability : Real = 0.0
/andSubsFailureProbability : Real
/orSubsFailureProbability : Real

B

49




3-1 Representing FT in SysML

Dr Matt Amissah, 2025

bdd [Package] Constraints|[ Probability Formulae ]jJ

«constraint»
And
{if not inputProbabilities:
result = @

else:

result = 1

for p in inputProbabilities:
result *= p

result = round(result, 4)}

4

parameters

inputProbabilities : Real [*]
result : Real

«constraint»

K1

or
{print(inputProbabilitie

FaultTree Pattern definition

if not inputProbabilities:
result = @

else:

temp = 1

for p in inputProbabilities:
temp *= (1-p)

result = round(1 - temp, 4)
}

parameters

inputProbabilties : Real [*]
result : Real

24




3-1 Representing FT in SysML

R bdd [Package] Casel[ Critical/Redundant Grouping ]J
 |nstance Table is
«blocks»
an instantiation [@3—5 Vonito
{subsets orSubs} {subsets orsSubs} ri
of the BDD 7 i
 |nstance Table is B e
{subsets orsubs} {subsets andsubs} {subsets andsubs} P-4
monitorArbitrate |1 backup primary |1
th e Fa u |t Tree Monitomnd;ﬁtltzic::::ti.onrﬂodule c:nt?tl:oclklj;r A Fliht
y Baciup
# Name leafNodeFailureProba... failureProbability [Pl orSubs [Pl andSubs
= ctriSub : Structure:Case1:
1 |B BFCS 0 Top-level Node @
| — |=] actuator : Structure::Case
2 = actuator 0 m | |
= monitor&Arbitrate : Stru« =l primaryCtrl : Structure::(
3 B = ctrlSub 0 0.36 } B E " rth e et
. —! packu rl : Structure::
. ' | Intermediate Node | P
4 = primaryCtrl m 04
= =1 backupCtrl ) 0.5
6 (=] monitor&Arbitrate e 0.2

Amissah, 2025

Leaf Nodes

25



3.2 Connected Models

bdd [Package] Casel[ Critical/Redundant Grouping ]J
A change in the BDD is L P A change in the Instance
reflected in the Instance j‘“c_f“‘“L Table is reflected in the
Table {subsets orSubs} {subsets orSubs} BDD
ctrlsub |1 actuator |1
«block» «block»
Controlsub Actuator
‘ [
{subsets orsubs} {subsets andSubs} {subsets andsubs}
monitorArbitrate |1 backup primary |1
«block» «block»
MonitorAndArbitrationModule Controller
# Name leafNodeFailureProba... failureProbability [Pl orSubs [Pl andSubs
| = ctriSub : Structure:Casel:
1 (B BEFCS 1.0E-12 0.424
| | |= actuator : Structure::Case
2 =] actuator 0.1 0.1 | |
=] monitor&Arbitrate : Stru« =l primaryCtrl : Structure:
3 | B Sctrisub 1.0E-12 0.36 - gymaly
| | =1 backupCtrl : Structure:.
4 = primaryCtrl 04 04
=1 backupCtrl 0.5 0.5
6 =] monitor&Arbitrate 0.2 0.2 26



3-2 Connected Models

0.01

0.009

0.008

0.007

0.006

0.005

0.004

Probability of Loss of Control

0.003

0.002

0.001

Depending on Probability of
Failure of Monitoring and
Arbitration, add Redundancy
can increase Probability of
Failure

-_—
0.01 0.1 1 10 100

Ratio of Failure of P_MandArb and P_FC-P

===Monitor and Arb ==No Mon and Arb

Probability of Failure of
"Monitor and Arbitrate
Module" cannot exceed a
threshold before it becomes
a liability
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3-3 Deriving FTs

bdd [Package] Structure[ FCS Logical Decomposition ])

«block»

FlightControlSystem

-

al§
ctrlSub actuator

«block» E
ControlSub

«block» E
Actuator

[
primary backup

monitorArbitr'atel

Loss of Control

ACtUdte

Control

«block» El

Controller

«block»

MonitorAndArbitrationModule

&

St Fail
JtHTacesTats

Flight Controls
Fail

Moni{oring

and
Arbitration

Module Fails

Both

Controllers Fail

Flight Control-
Primary

P_LOC = (P_Actuate_Control_Surfaces +
P_Flight _Control) -
(P_Actuate_Control_Surfaces *
P_Flight_Control)

P_Flight_Control =

P_Monitoring & Arbitration +
P_Flight Control - (P_Monitoring &
Arbitration * P_Flight Control)

P_Flight Control =
P_Primary * P_Backup

Note: Assumes independence and no
common cause or shared hardware

Flight Control-
Backup

28



3-3 Deriving Fault Trees from SysML

Ibd Edock] System [Syslem :zuclureli

&

sy ]
<<eoundant=> =
811

/ a--J'--. .,—IJ_-\.
Esdarnal, Antarna™

| Ermorad | |Failure uf||

\

v Bl
s

ad error

"
’ '.—1 L
| | Ararnal®

( Failura |

[i2-1 emror || 2-2 error | "\Muf ELE_}_;J
e

a
Ll

System Top
Ewvant

.ffﬁﬁemﬁ'xl —
Failure
-

B
-
b 1 1
Amiermal®, | 131 wmor | | i3-2 amar |
i Falua | T
. ofB3
T )
e
Antema™,
- | Falure |
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F. Mhenni, N. Nguyen and J. -Y. Choley, "Automatic
fault tree generation from SysML system

models," 2014 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, Besacon,
France, 2014, pp. 715-720, doi:
10.1109/AIM.2014.6878163. 29



Challenges in Fault Tree Analysis

1. Rare event probabilities with ol | D
estimates or small sample size - o
from testing
M M 143 tuate Contro Flight .
2. Missing probabilities Riwieiie Controlsail
1. Estimated based on previous N - o
mOdeI Estimated Voo Bo‘th
2. No estimate available based on | and arbitration Controllers
. . . previous Module Fails Fail
3. Insufficient Sample Size model 5
. No estimate
3. Common cause failures available ——! —
Flight Control- Flight Control-
Primary Backup

- 30 ,
Insufficient sample sjze



3.4 FT Uncertainty Analysis — SSA/Design Challenges

Desigh Challenge

* FT parameters may have no
supporting data for quantification

* FT parameters may be extreme
events that are typically rare

o arise from a combination of events
that may have never been previously
observed

 Rare-event nature of data makes
point estimates inherently noisy

Loss of
Control

= O

D

Actuate Control
Surfaces Fails

Flight
Controls Fail

AN

Estimated

|

based on

Monitoring
and Arbitration
Module Fails

Both

Controllers

Fail

previous
model

?

No estimate

available

[

Flight Control-
Primary

l

Flight Control-
Backup

Sufficient sample size




3.4 Fault Tree Uncertainty Analysis — Insufficient Sample Size

Background

* Probability of Top-Level Event is
calculated as a Point-Estimate

1. Point-Estimate is the "mode" of a
distribution representing a
Confidence Interval

2. Point-Estimate is dependent on
Point-Estimate probabilities in FT
nodes with their own Uncertainty
Distribution

Loss of
Control

=~ O

Actuate Control
Surfaces Fails

Flight
Controls Fail

.00137
R VAN

Point estimate => Uncertainty
distribution

with
Confidence
Interval

|

Monitoring
and Arbitration
Module Fails

Both

Controllers

Fail

[

Flight Control-
Primary

|

Flight Control-
Backup

Make decisions with appropriate to level of confidence in mode




3.4 Fault Tree Uncertainty Analysis — Insufficient Sample Size

* Primary Flight Control Unit (PFCU):
= tested for 1,000 hours
= 1] failure is observed - o)
= > Estimated failure rate is 1E-3 per hour
* How accurate is this? - |
. Repe)at the testing 10 times (i.e., 10 tests of 1,000 hours . é}
each oo T) [ gnconi

Resulting failuresin each test: 2,1,0,1,3,1,0,0,2, 1

robability is 1E-3, and the Sufficient sample size

* If the true (unknown) failureg
component is tested for 1,000 hours, for 63% of the tests )
the number of failures observed will not be 1 (i.e., 0 or 2 or

3...).




3-4 FT Uncertainty - Replace Point Estimates with Distributions

C L. . . -9
* Use GAMMA distribution with
parameters o, 3 T
* Suppose 1 failure is observed in 1,000 hours ﬁ
of testing for primary flight controller | - i
o The point estimate for the failure rate is 1E-3 Point é}
o Based on the point estimate, the uncertainty estimate |
distribution for the failure rate is a gamma FgtcConrol- [ | FightConrl

distribution with parameters oo = 1.5, 3 = 1,000

e General method: If k failures observed from n
trials, assign uncertainty distribution for
failure probability as a gamma distribution
with parametersa =0.5+k, 3 =n

* Note: Approach based on Bayesian updating
of Poisson distribution

MA Uncertainty distribution
for failure rate

0 0.001 0.002 0.003 0.004 0.005 0.006
Nikdel, S., J. Shortle. 2023. A framework for uncertainty assessment in event tree safety models.

Integrated Communications, Navigation, and Surveillance Conference, Herndon, VA.



3.4 FT Uncertainty — Calculating Top-Level Uncertainty

0 0001 0002 0003 0004 0005 0006

Uncertainty approach
* Measure failure probability of each base event (e.g., k failures
out of n trials)
* Assign each base event an uncertainty distribution (gamma
distribution with oo =0.5 + k, 3 = n)

* Monte Carlo simulation loop:

* For each base event, take a random draw its uncertainty
distribution
e Quantify the fault tree from bottom-up with AND/OR logic

* Assemble distribution of top-level event and any
other events of interest

Loss of

Control

=~ O

Actuate Control
Surfaces Fails

Flight
Controls Fail

Monitoring
and Arbitration
Module Fails

Controllers

Flight Control-
Primary

Flight Control-
Backup
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3.4 F

SysM

" Uncertainty — Example Implementation in

Loss of
Control
Actuate Con'FroI ConFtlii?stFail
27 out Of 9’000 Surfaces Fails
Gamma (a = 27.5, B = 9,000) - o
Monitoring Bo‘th
and Arbitrat.ion Contrc?llers
1 out Of 1’000 Module Fails Fail
Gamma (o = 1.5, = 1,000)
I |
Flight Control- Flight Control-
3 out of 200 Primary Backup 1 out of 57
Gamma (o = 3.5, = 200) Gamma (o = 1.5, f = 57)

Test data used to quantified failure probability
Uncertainty distribution for failure probability
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3.4 FT Uncertainty — Example Implementation

INSysM L

bdd [Package] Constraints & Patterns[ Distributed Fault Tree Pattern ]/J

 FaultTreePattern is Extended

* LeafNodeProbability is defined a

/leadNodeFailureProbability :

Real [1] = @.001{redefines leafNodeFailureProbability}

«block» .
FaultTreePattern GAM MA ra ndOm VvVa rlable
«block»
Distributed_FTP
constraints d [Package] Constraints & Patterns[ Gamma Formula ],J
. GammaVar
values
alphaPlusK : Real = 1.7 «constraint» Eg
beta : Real = @.001 GammaVar

constraints

B4

{from random import gammavariate

result = round(gammavariate(alpha, beta), 16)}

par [Block] Distributed_FTP[ Gamma Distributed Base Failure ]/J

parameters

alpha : Rea

( -
beta : Real bEta:I «constraint»

:GammaVar
alpha ::]

\

alphaPluskK : Real

result

beta : Real
result : Real

/leadNodeFailureProbability : Real [1]

Amissah, 2025
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3.4 FT Uncertainty — Example Implementation in
SysML

Monte-Carlo Simulation Initial Values

# Name [V beta M alphaPlusk leadNodeFailur... failureProbability ol orSubs [Fl andSubs
=) controlSub : Struc
= flightControlSystem 1.0E-12 1 4.0E-12 0.0035 -
_ _ _ _ _ : _ = actuator : Structur
i 2 =) actuator 0.0001 27.5 0.0017 0.0017
l = mAndA : Structure = primaryCtrl
3 B = controlSub 1.0E-12 1 1.0E-12 0.0018 vctury = primary
_ _ _ | _ = backupCtrl
4 _ = primaryCtrl '0.005 _3.5 0.0118 _0.01 18
= backupCtrl 0.0175 1.5 0.0372 0.0372
= mAndA 0.001 1.5 0.0014 0.0014

actuator.failureProbability

e actuator, failureProbability
N 1090
- o e
outofspec 0.
FCS Failure Probability
- o1 failureProbability
- N 1000
275 Mean 0.0047
o D 0.0014
250 Qutofspec 0.0000
7%
225
. “ trolSub.fail Probabili
controlSub.failureProbability ) . 200 tho 1
o controlSub. failure robability, > (0} I e
N 1000 =3 1?5
Mean 0.0020 =
0 o 0.0013 o
00015 00018 0002 00023 00025 00027 0003 00033 00035 00038 0004 00043 0.0045 outofspec 0.0000 =1
actuator-failureProbability g 180
b 425
100
z
H 75
H
£ 50
2%
0
0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.01 fgﬁ 0.013
failureProbability

0,007 0.008 0.009 001 0011

0,005 0.006
controlSub.failure Probability



3.5 Fault Tree Uncertainty — Interval Analysis

Background:

* Frequently, especially in early
design phases, one or more nodes
in a fault tree are unknown

 SME quantify as a range

 What is Risk budget assigned to (new)
Function to meet Top-level Risk
o What are implications for ranges of other
nodes in the tree?
o How do constraints on top level
probabilities flow down to
requirements on base events?

Loss of
Control

~ O

Actuate Control
Surfaces Fails

Flight
Controls Fail

Monitoring
and Arbitration
Module Fails

Both

Controllers

Fail

No estimate available

Flight Control-
Primary

Flight Control-
Backup




3.5 Fault Tree Uncertainty — Interval Analysis

Design Challenge:
 What is Risk budget assigned to

(new) Function to meet Top-level Risk

o What are implications for ranges of
other nodes in the tree?

o How do constraints on top level

probabilities flow down to
requirements on base events?

Loss of
Control

@ O

Actuate Control
Surfaces Fails

Flight
Controls Fail

Monitoring
and Arbitration
Module Fails

Both

Controllers

Fail

No estimate available

Flight Control-
Primary

Flight Control-
Backup
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3.5 Fault Tree Uncertainty — Interval Analysis

Theory

* Each node is quantified by a lower bound and upper bound on the event

probability

* If the probability of an event is completely unknown it's probability interval is [0, 1]
 If lower bound = upper bound, the event probability is known exactly

[P,, P,] Constraints on [P, P,] Constraints on
52 interval bounds interval bounds
A P > ABC, £ 21-(1-4)(1-B)1-C)
Z P, < A4,B,C, P, <1-(1-4,)(1-B,)1-C,)
1-P
A =>1- !
42 BPIC L (1-B)(1-C)
272 4 <1 l_Pz
Node A Node B Node C 4 < P, Node A Node B Node C 2= (1-B)(1-C)
, <
AC B >L
[41, 4] By, B)] [CLGl [41, 4] [B1. B,] [C), C2]
>




3.5 Fault Tree Uncertainty — Interval Analysis

Theory
* Each node is quantified by a lower bound and upper bound on the event

probability

* If the probability of an event is completely unknown it's probability interval is [0, 1]

 If lower bound = upper bound, the event probability is known exactly

[Plﬂ P2]

e\

Constraints on
interval bounds

P> 458G
})2 S AZB2C2
R

I_I\If)deA

[Ala A2]

I_Node B

[Bla 92]

4, >

B,C,

Node C P,

o AICI
B >L

1

[Cla CZ]

Constraints on
interval bounds

E 21_(1_141)(1_81)(1_C1)
P, <1-(1- 4,)(1-B,)(1-C,)

[Pla PZ]
Node A Node B
[4,, 4;] [B,, B,]

___I-R
' (1-B)(1-Cy)
1-P
A <1- 2
Node C| =" (=B)1-c)
B >L
[Cy, C;]



3.5 Fault Tree Uncertainty — Interval Analysis

Nodes Band C
known exactly

Initially known intervals

Derived intervals

()
[0, 1] =
LNode A Node B
[0, 1] [.4, 4]

Node C

L1, .1]

a)
Z
[0, .04] <
Node A Node B Node C
[0, 1] [.4, 4] [.1, .1]
P> A4BC, ° Calculate Interval
1)2 < Aszcz for [Pl, P2]
A4 2
B2C2
A4, < b
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3.5 Fault Tree Uncertainty — Interval Analysis

* Top probability
required <= .01

* Requirements on A?

Initially known intervals

N ode_C_I

a)
@ME

Node A LNodeE

[0, 1] [.3, .4] [.1,.2]

Derived intervals

a)
Z

[0, .01] <
Node A Node B Node C
[0, .333] [.3, .4] [.1,.2]
})1 2 AIBICI
P, < 4,B,C, e (Calculate Interval
4> P for [Al, A2]

BZCZ

a4



3.6 Common Cause Failures

Problem

Loss of
Control

e Large, complex systems -> Large complex

FTs

e Where are the Common Cause Failures?

 How to Calculate Top-level Risk with
common cause failures

* Note:

o When base events are not independent, the
bottom-up approach of calculating each
parent from Its children does not yield the
correct result

o An alternate algorithm is required

Actuate Control
Surfaces Fails

o O
Flight
Controls Fail
Monitoring
and Arbitration
Module Fails

Both

Controllers

Fail

Flight Control-

Flight Control-

Primary Backup
Primary Backup

controller

Sensor

)

controller
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3.6 Common Cause Failures

* Example: Primary and backup flight
control use the same (or same type
of) sensor

Loss of

Actuate Control
Surfaces Fails

Control
o O
Flight
Controls Fail
Monitoring Both
and Arbitration Controllers
Module Fails Fail
| |
Flight Control- Flight Control-
Primary Backup
Sensor Primary Sensor Backup
controller controller

46




3.7 Algorithm for Evaluating Fault Tree with
Common Cause Failures

* |dentify all minimal cutsets in the tree
e A cutset is a set of base events such that if each event in the set occurs/fails,
then the top event occurs/fails

A minimal cutset is a cutset such that if any event is removed from the set, it
is no longer a cutset

* Failure of top event is Pr{any minimal cutset occurs}



3.7 Example: Minimal Cutsets Es

* FT for Flight Control minimal cutsets:
* {A: actuator control surface fails}
* {B: monitoring / arbitration fails}
e {C: sensor fails}

e {D: primary controller fails, backup
controller fails}

* Probability of top event = Pr{any

minimal cutset occurs} = Pr{Aor B or C

or D}

+ =1 - (1-Pr{A}) (1-Pr{B}) (1-Pr{C}) (1-Pr{D})

e =1-(1-0.1)(1-0.2)(1-0.3)(1-0.4*0.5)
* =.5968

Loss of
Control

Actuate Control
Surfaces Fails

Flight
Controls Fail

0.1

Monitoring Both
and Arbitration Controllers
Module Fails Fail
0.2
| |
Flight Control- Flight Control-
Primary Backup
Sensor Primary Sensor Backup
controller controller
0.3 0.4 0.3 0.5




3.7 CCF: SysML Implementation

Top-level Probability is lower than

it should be

bdd [Package] Case3_CommonCause [ Critical/Redundant Grouping- Independent ])

o . «block»
Assuming independent sensors, T o
I -
{subsets orSubs} {subsets orSubs}
controlSub |1 actuator
«block» [ «block»
ControlSub Actuator
[ )

\ {subsets andSubs} {subsets andSubs} {subsets orSubs}
backul primary |1 mAndA | 1
«block» g «block» E
ontrolModule MonitorAndArbitrateModule

# i wee i ili ts orsSul s
Name [V leafNodeFailureP...| [V jéllureProbablllw I SN b

= ¢ «block» [ «block» ]

1 E = FCS 1_0E-12 0‘5514 Controller | Sensor
=

2 =l actuator 0.1 0.1
=l : ~Cag =l i .

3 B = controlSub 10E-12 05016 mAndA : Structure:zCas primaryCtriModule : Structur

=1 backupCtrIModule : Structurs

= : Structure:C

4 B = primaryCtriModule  [1.0E-12 0.58 SENSOr s SHerre ane

_ = controller : Structure:C

5 =l sensor 03 03

6 =] controller 0.4 04 _ |
= backup. : Struct

7 B = backupCtriModule 1.0E-12 0.65 ackup-sensor - SiHet

_ _ = backup.controller : Stru

8 =l backup.sensor 0.3 03

9 =l backup.controller 0.5 0.5

10 = mAndA 0.2 0.2 49



Assuming dependent sensors (i.e.
Common Cause), Top-level

3 . 7 CC F . SyS I\/I I_ | M p | eme ntat| on Probability?correct (and higher)

bdd [Package] Case3_CommonCause [ Critical/Redundant Grouping- Common Cause ],J

wblock» Q
FlightControlSystem_CCA
actuator|{subsets orSubs} ppimapyl{subsets andSubs} backup]{subsets andSubs} sen ubsets orSubs} mAndAl{subsets orSubs}
«block» ]| «block» = «block» = «block» =
Actuator Controller Sensor MonitorAndArbitrateModule
leafNodeFailure... failureProbabili... orSubs : - ‘ E andSubs :
i Name !
: Real : Real FaultTreePattern | FaultTreePattern
(=] actuator : Structure:Cas¢ =] primary : Structure:Ca
1 |B EFCS_CCA 1.0E-12 0.5968 (=] mANndA : Structure:Case| =l backup : Structure:Ca:
‘ | .El sensor : Structure::Case3
Z (=] actuator 0.1 0.1
3 =l mAndA _0.2 _0.2
4 (=] sensor 0.3 0.3
E =] primary 04 04 | |
6 =l backup 0.5 0.5 | | 50



Organization

1.

4.

Introduction and Motivation
Example: System Safety Analysis and MBSE/SysML Models

Advances in Fault Tree Analysis

Representing Fault Trees in SysML

Connected SysML Models (FT, BDD)

Deriving FT from BDD, AD, and IBD

Uncertainty Quantification for Fault Trees

Interval Analysis for Fault Trees

|dentifying Common Cause Failures in FT

Calculating Top-Level Probability for FTs with Common Cause

Future Work

NoOoUusEWN R



4 Future Work

* Training Module
e Case Studies
* Pilot Projects

Lance Sherry — Isherry@gmu.edy
John Shortle — jshortle@gmu.edu
Matthew Amissah — mamissah@gmu.edu

Ali Raz — araz@gmu.edu
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