Opportunities and Challenges in Integrating System Safety Models into SysML:

SysML-based Fault Tree Analysis

Lance Sherry, John Shortle, Matthew Amissah, Ali Raz

SERC: AI4SE & SE4AI Workshop 2025

Sept 17,18, 2025

One Model, Multiple Views

Embedded Safety Model Analysis

George Mason University Systems Engineering and Operations Research

Organization

- 1. Introduction and Motivation
- 2. Example: System Safety Analysis and MBSE/SysML Models
- 3. Advances in Fault Tree Analysis
 - 1. Representing Fault Trees in SysML
 - Connected SysML Models (FT, BDD)
 - 3. Deriving FT from BDD, AD, and IBD
 - 4. Uncertainty Quantification for Fault Trees
 - 5. Interval Analysis for Fault Trees
 - 6. Identifying Common Cause Failures in FT
 - 7. Calculating Top-Level Probability for FTs with Common Cause
- 4. Future Work

1 System Safety Analysis (SSA)

- Safety is prevention of fatalities, injuries, property damage, financial losses
- SSA is structured process for identifying, analyzing, and mitigating hazards in complex engineered systems throughout their lifecycle
- SSA supports early identification of design flaws, latent failures, and unsafe interactions across subsystems and human operators
- "Safety must be designed into the system from the beginning, not added as an afterthought."
 - Leveson (2012), Engineering a Safer World

1 Importance of SSA

- Reduces cost and time by catching hazards early in the design phase
- Increases public trust, system reliability, and mission assurance
- Supports certification and compliance with <u>regulatory standards</u> (e.g., MIL-STD-882E, ARP4761)
 - Regulatory standards designed to protect public from deploying and operating unsafe systems

1 SSA Artifacts in the Life-cycle

- Concept Phase: Preliminary Hazard Analysis (PHA)
- Design Phase: FTA, FMEA, STPA, model-based hazard simulations
- Test/Validation: Verification of safety requirements
- Operations: Continuous monitoring and feedback loops

1 Integration of SSA and SysML-based MBSE

- MBSE (using SysML) is structured framework for modeling requirements, behaviors, structure, and parametrics of complex systems
- SSA can leverage these models to trace hazards, validate safety requirements, and analyze failure propagation early in the lifecycle

• "Integrating safety analysis into SysML models provides visibility into design risks and supports traceable safety assurance." — Friedenthal et al. (2014)

1 System Engineering and System Safety Artifacts

Hazard Analysis

RPR Hazards • ... • • Collide with bystander causing fatality or injury • Collide with operator causing fatality or injury • Collide with infrastructure causing property damage • ...

Safety Model

1 Organizational Structure

1 System Engineering and System Safety Artifacts

Hazard Analysis

Safety Model

Inefficiencies in Separating SSA and System Design

- SSA work on old designs
- Errors introduced in "interpretation" of designs
- Inability to make design tradeoffs

Risk Analysis and Assessment Modeling Language (RAAML)

- A SysML-based profile developed by the Object Management Group (OMG)
- Extends SysML with stereotypes for:
 - FMEA (Failure Modes and Effects Analysis)
 - FTA (Fault Tree Analysis)
 - STPA (System-Theoretic Process Analysis)
 - RBD (Reliability Block Diagrams)
- Integrates risk analysis directly into the modelbased systems engineering (MBSE) workflow.
 - provides a standardized way to model safety and reliability analysis artifacts within a SysML model

Example RAAML

- BrakeControlUnit is a system component modeled with SysML Block
- PressureSensor is annotated with <<FMEAElement>> for risk modeling
- A Failure Mode (Sensor stuck high) is linked directly to the component
- An FTA (Fault Tree Analysis) is constructed using <<FTAEvent>> and <<LogicGate>> stereotypes to model the hazard "Loss of Braking"
- FTA shows how component failures propagate to system-level hazards

```
+----+
   <<Block>>
  BrakeControlUnit
 pressureSensor: Sensor

    actuator: Actuator

 <<FMEAElement>>
  PressureSensor
 <<FailureMode>>:
  'Sensorstuck high
 <<FTAEvent>>
 LossOfBraking
 <<LogicGate>>
| << FTAEvent>> | | << FTAEvent>>
| SensorFails | | ActuatorFails
```

1 Integration of SSA and SysML based MBSE

 Enables bidirectional traceability between safety artifacts and system models

 Enables automated analysis of safety models

- Friedenthal, S., Moore, A., & Steiner, R. (2014). A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann
- Thomas, J., Fleming, C. H., & Leveson, N. G. (2021). "STPA Handbook." MIT Partnership for Systems Approaches to Safety and Security.
- Thomas, J., & Leveson, N. (2013). "Performing STPA with SysML." MIT Partnership for Systems Approaches to Safety and Security (PSASS).
- Eames, D. P., & Steiner, R. (2017). "Bringing Safety-Critical Systems into MBSE." INCOSE International Symposium, 27(1), 477–489
- JPL/NASA. (2021). OpenMBEE User Guide https://openmbee.org/
- Lucio, L., et al. (2021). "Collaborative MBSE with OpenMBEE: A NASA Use Case." INCOSE IS 2021 Proceedings

Organization

- 1. Introduction and Motivation
- 2. Example: System Safety Analysis and MBSE/SysML Models
- 3. Advances in Fault Tree Analysis
 - Representing Fault Trees in SysML
 - 2. Connected SysML Models (FT, BDD)
 - 3. Deriving FT from BDD, AD, and IBD
 - 4. Uncertainty Quantification for Fault Trees
 - 5. Interval Analysis for Fault Trees
 - 6. Identifying Common Cause Failures in FT
 - 7. Calculating Top-Level Probability for FTs with Common Cause
- 4. Future Work

CON-OPS

Hazard: Loss of (Flight) Control (LOC)

COMPONENTS

Flight Controllers

Monitor & Arbitration

1

Hazard: Loss of (Flight) Control

2

Causes of Loss of Control

Failure: Actuate Control Surfaces

Failure: Flight Control

Failure: Monitor & Arbitrate

Failure: Flight Control Primary and Flight Control – Back Up

5

P_LOC = (P_Actuate_Control_Surfaces + P_Flight_Control) - (P_Actuate_Control_Surfaces * P_Flight_Control)

P_Flight_Control =
P_Monitoring & Arbitration +
P_Flight Control - (P_Monitoring &
Arbitration * P_Flight Control)

P_Flight Control =
P_Primary * P_Backup

Note: Assumes independence and no common cause or shared hardware

2 Challenges

- 1. Representing Fault Trees in SysML
- 2. Deriving FT from BDD, AD, and IBD
- 3. Connected Models for Bi-directional Traceability (FT, BDD)
- 4. Uncertainty Quantification for Fault Trees
- 5. Interval Analysis for Fault Trees
- 6. Identifying Common Cause Failures in Fault Trees
- 7. Calculating Top-Level Prob for FTs with Common Cause

Organization

- 1. Introduction and Motivation
- 2. Example: System Safety Analysis and MBSE/SysML Models
- 3. Advances in Fault Tree Analysis
 - Representing Fault Trees in SysML
 - Connected SysML Models (FT, BDD)
 - 3. Deriving FT from BDD, AD, and IBD
 - 4. Uncertainty Quantification for Fault Trees
 - 5. Interval Analysis for Fault Trees
 - 6. Identifying Common Cause Failures in FT
 - 7. Calculating Top-Level Probability for FTs with Common Cause
- 4. Future Work

3-1 Representing FT in SysML – FT Templale

Parametric Diagram

FaultTree Pattern

Provides SysML template for capturing a Fault Tree

3-1 Representing FT in SysML

Dr Matt Amissah, 2025

3-1 Representing FT in SysML

- Instance Table is an instantiation of the BDD
- Instance Table is the Fault Tree

#	Name	■ leafNodeFailureProba	▼ failureProbability		■ orSubs	■ andSubs
1	□ FCS	0 Top-level Node	0.424		Sub : Structure::Case1: uator : Structure::Case	2
2	actuator	0	0.1		To	3
3	□ ctrlSub	0	0.36			primaryCtrl : Structure::(backupCtrl : Structure::C
4	□ primaryCtrl	0.4	0.4	urate	Node	22
5	□ backupCtrl	0.5	0.5			7
6	□ monitor&Arbitrate	0.2	0.2			<u> </u>

Amissah, 2025 Leaf Nodes

3.2 Connected Models

#	Name	■ leafNodeFailureProba		■ orSubs	andSubs
1	□ FCS	1.0E-12	0.424	ctrlSub : Structure::Case1:actuator : Structure::Case	
2	= actuator	0.1	0.1	actuator . Structureease	3
3	□ ctrlSub	1.0E-12	0.36	monitor&Arbitrate : Struc	primaryCtrl : Structure: backupCtrl : Structure:
4	□ primaryCtrl	0.4	0.4		22
5	□ backupCtrl	0.5	0.5		7
6	monitor&Arbitrate	0.2	0.2		26

3-2 Connected Models

Probability of Failure of
"Monitor and Arbitrate
Module" cannot exceed a
threshold before it becomes
a liability

3-3 Deriving FTs

3-3 Deriving Fault Trees from SysML

Challenges in Fault Tree Analysis

- 1. Rare event probabilities with estimates or small sample size from testing
- 2. Missing probabilities
 - Estimated based on previous model
 - No estimate available
 - 3. Insufficient Sample Size
- 3. Common cause failures

3.4 FT Uncertainty Analysis – SSA/Design Challenges

Design Challenge

- FT parameters may have no supporting data for quantification
- FT parameters may be extreme events that are typically rare
 - arise from a combination of events that may have never been previously observed
- Rare-event nature of data makes point estimates inherently noisy

3.4 Fault Tree Uncertainty Analysis – Insufficient Sample Size

Background

- Probability of Top-Level Event is calculated as a Point-Estimate
 - Point-Estimate is the "mode" of a distribution representing a Confidence Interval
 - 2. Point-Estimate is dependent on Point-Estimate probabilities in FT nodes with their own Uncertainty Distribution

Make decisions with appropriate to level of confidence in model

3.4 Fault Tree Uncertainty Analysis – Insufficient Sample Size

- Primary Flight Control Unit (PFCU):
 - tested for 1,000 hours
 - 1 failure is observed
 - ---> Estimated failure rate is 1E-3 per hour
- How accurate is this?
- Repeat the testing 10 times (i.e., 10 tests of 1,000 hours each)
 - Resulting failures in each test: 2, 1, 0, 1, 3, 1, 0, 0, 2, 1
- If the true (unknown) failure probability is 1E-3, and the component is tested for 1,000 hours, for 63% of the tests) the number of failures observed will **not be 1** (i.e., 0 or 2 or 3...).

Sufficient sample size

3-4 FT Uncertainty - Replace Point Estimates with Distributions

- Use GAMMA distribution with parameters $\alpha, \Box \beta$
- Suppose 1 failure is observed in 1,000 hours of testing for primary flight controller
 - The point estimate for the failure rate is 1E-3
 - O Based on the point estimate, the <u>uncertainty</u> <u>distribution</u> for the failure rate is a gamma distribution with parameters $\alpha = 1.5$, $\beta = 1,000$
- General method: If k failures observed from n trials, assign uncertainty distribution for failure probability as a gamma distribution with parameters $\alpha = 0.5 + k$, $\beta = n$
- Note: Approach based on Bayesian updating of Poisson distribution

3.4 FT Uncertainty – Calculating Top-Level Uncertainty

Standard approach

- Measure failure probability of each base event (e.g., k failures out of n trials)
- Quantify each base event with its point estimate (e.g., k/n)
- Quantify fault tree from bottom-up using AND/OR gate logic

Uncertainty approach

- Measure failure probability of each base event (e.g., k failures out of n trials)
- Assign each base event an <u>uncertainty distribution</u> (gamma distribution with $\alpha = 0.5 + k$, $\beta = n$)
- Monte Carlo simulation loop:
 - For each base event, take a random draw its uncertainty distribution
 - Quantify the fault tree from bottom-up with AND/OR logic
- Assemble distribution of top-level event and any other events of interest

3.4 FT Uncertainty – Example Implementation in SysML

3.4 FT Uncertainty – Example Implementation in SysML

3.4 FT Uncertainty – Example Implementation in SysML

Monte-Carlo Simulation Initial Values

#	Name	beta	■ alphaPlusK	■ leadNodeFailur		△ P orSubs	■ andSubs
8	☐	1.0E-12	1	4.0E-12	0.0035	controlSub : Struc	5
0 3	— ingritcontrolayatem	1.01-12	4.02-12 0.0033	0.0033	actuator: Structur		
2	actuator	0.0001	27.5	0.0017	0.0017		
5	□ □ controlSub	1.0E-12	1	1.0E-12	0.0018	mAndA: Structure	□ primaryCtrl□ backupCtrl
4	□ primaryCtrl	0.005	3.5	0.0118	0.0118		07
5	■ backupCtrl	0.0175	1.5	0.0372	0.0372		7 6
6	■ mAndA	0.001	1.5	0.0014	0.0014		2, 23

Background:

- Frequently, especially in early design phases, one or more nodes in a fault tree are unknown
- SME quantify as a range
- What is Risk budget assigned to (new) Function to meet Top-level Risk
 - What are implications for ranges of other nodes in the tree?
 - How do constraints on top level probabilities flow down to requirements on base events?

Design Challenge:

- What is Risk budget assigned to (new) Function to meet Top-level Risk
 - What are implications for ranges of other nodes in the tree?
 - How do constraints on top level probabilities flow down to requirements on base events?

Theory

- Each node is quantified by a <u>lower bound</u> and <u>upper bound</u> on the event probability
 - If the probability of an event is completely unknown it's probability interval is [0, 1]
 - If lower bound = upper bound, the event probability is known exactly

Theory

- Each node is quantified by a <u>lower bound</u> and <u>upper bound</u> on the event probability
 - If the probability of an event is completely unknown it's probability interval is [0, 1]
 - If lower bound = upper bound, the event probability is known exactly

- Top probability required <= .01
- Nodes B and C quantified as intervals
- Requirements on A?

3.6 Common Cause Failures

Problem

- Large, complex systems -> Large complex FTs
- Where are the Common Cause Failures?
- How to Calculate Top-level Risk with common cause failures

• Note:

- When base events are not independent, the bottom-up approach of calculating each parent from its children does not yield the correct result
- An alternate algorithm is required

3.6 Common Cause Failures

 Example: Primary and backup flight control use the same (or same type of) sensor

3.7 Algorithm for Evaluating Fault Tree with Common Cause Failures

- Identify all minimal cutsets in the tree
 - A <u>cutset</u> is a set of base events such that if each event in the set occurs/fails, then the top event occurs/fails
 - A <u>minimal cutset</u> is a cutset such that if any event is removed from the set, it is no longer a cutset
- Failure of top event is Pr{any minimal cutset occurs}

3.7 Example: Minimal Cutsets

- FT for Flight Control minimal cutsets:
 - {A: actuator control surface fails}
 - {B: monitoring / arbitration fails}
 - {C: sensor fails}
 - {D: primary controller fails, backup controller fails}
- Probability of top event = Pr{any minimal cutset occurs} = Pr{A or B or C or D}
 - = 1 $(1-Pr{A}) (1-Pr{B}) (1-Pr{C}) (1-Pr{D})$
 - = 1 (1-0.1)(1-0.2)(1-0.3)(1-0.4*0.5)
 - = .5968

3.7 CCF: SysML Implementation

Assuming *dependent* sensors (i.e. Common Cause), Top-level Probability is correct (and higher)

3.7 CCF: SysML Implementation

#	Name	leatinodeFailure	TallureProbabili	orsubs :	andSubs :	
π	- Ivaille	: Real	: Real	FaultTreePattern	FaultTreePattern	
				actuator : Structure::Case	primary : Structure::Ca	
1	☐ FCS_CCA	1.0E-12	0.5968	mAndA: Structure::Case	□ backup : Structure::Cas	
				= sensor : Structure::Case3	20	
2	actuator	0.1	0.1		300	
3	□ mAndA	0.2	0.2		22	
4	= sensor	0.3	0.3		2	
5	primary	0.4	0.4		9	
6	□ backup	0.5	0.5		50	
	3 4 5	1	1	1 = FCS_CCA 1.0E-12 0.5968 2 = actuator 0.1 0.1 3 = mAndA 0.2 0.2 4 = sensor 0.3 0.3 5 = primary 0.4 0.4	1 = Fault Faul	

Organization

- Introduction and Motivation
- 2. Example: System Safety Analysis and MBSE/SysML Models
- 3. Advances in Fault Tree Analysis
 - Representing Fault Trees in SysML
 - 2. Connected SysML Models (FT, BDD)
 - 3. Deriving FT from BDD, AD, and IBD
 - 4. Uncertainty Quantification for Fault Trees
 - 5. Interval Analysis for Fault Trees
 - 6. Identifying Common Cause Failures in FT
 - 7. Calculating Top-Level Probability for FTs with Common Cause
- 4. Future Work

4 Future Work

- Training Module
- Case Studies
- Pilot Projects

```
Lance Sherry – <u>Isherry@gmu.edy</u>
John Shortle – <u>jshortle@gmu.edu</u>
Matthew Amissah – <u>mamissah@gmu.edu</u>
Ali Raz – araz@gmu.edu
```