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1 System Safety Analysis (SSA)

• Safety is prevention of fatalities, injuries, property damage, financial 
losses

• SSA is structured process for identifying, analyzing, and mitigating 
hazards in complex engineered systems throughout their lifecycle

• SSA supports early identification of design flaws, latent failures, and 
unsafe interactions across subsystems and human operators

• “Safety must be designed into the system from the beginning, not 
added as an afterthought.”
— Leveson (2012), Engineering a Safer World

Leveson, N. G. (2012). Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press. 3



1 Importance of SSA

• Reduces cost and time by catching hazards early in the design phase

• Increases public trust, system reliability, and mission assurance

• Supports certification and compliance with regulatory standards (e.g., 
MIL-STD-882E, ARP4761)
• Regulatory standards designed to protect public from deploying and 

operating unsafe systems
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1 SSA Artifacts in the Life-cycle 

• Concept Phase: Preliminary Hazard Analysis (PHA)

• Design Phase: FTA, FMEA, STPA, model-based hazard simulations

• Test/Validation: Verification of safety requirements

• Operations: Continuous monitoring and feedback loops
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1 Integration of SSA and SysML-based MBSE

• MBSE (using SysML) is structured framework for modeling 
requirements, behaviors, structure, and parametrics of complex 
systems

• SSA can leverage these models to trace hazards, validate safety 
requirements, and analyze failure propagation early in the lifecycle

• "Integrating safety analysis into SysML models provides visibility into 
design risks and supports traceable safety assurance."— Friedenthal 
et al. (2014)

Friedenthal, S., Moore, A., & Steiner, R. (2014). A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann
Thomas, J., Fleming, C. H., & Leveson, N. G. (2021). "STPA Handbook." MIT Partnership for Systems Approaches to Safety and Security.
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1 System Engineering and System Safety Artifacts
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1 Organizational Structure
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1 System Engineering and System Safety Artifacts
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Inefficiencies in Separating SSA and System 
Design
• SSA work on old designs

• Errors introduced in “interpretation” of designs

• Inability to make design tradeoffs
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Risk Analysis and Assessment Modeling 
Language (RAAML)
• A SysML-based profile developed by the Object 

Management Group (OMG)

• Extends SysML with stereotypes for:
• FMEA (Failure Modes and Effects Analysis)
• FTA (Fault Tree Analysis)
• STPA (System-Theoretic Process Analysis)
• RBD (Reliability Block Diagrams)

• Integrates risk analysis directly into the model-
based systems engineering (MBSE) workflow.
• provides a standardized way to model safety and 

reliability analysis artifacts within a SysML model

11



Example RAAML

• BrakeControlUnit is a system 
component modeled with SysML 
Block

• PressureSensor is annotated with 
<<FMEAElement>> for risk modeling

• A Failure Mode (Sensor stuck high) is 
linked directly to the component

• An FTA (Fault Tree Analysis) is 
constructed using <<FTAEvent>> and 
<<LogicGate>> stereotypes to model 
the hazard “Loss of Braking”

• FTA shows how component failures 
propagate to system-level hazards

12

+------------------------+
|     <<Block>>                |
|   BrakeControlUnit     |
+------------------------+

| - pressureSensor: Sensor
| - actuator: Actuator   |
+------------------------+
          |
          v

+------------------------+
|  <<FMEAElement>>       |
|   PressureSensor             |
+------------------------+
| <<FailureMode>>:          |

|  "Sensor stuck high"       |
+------------------------+

          |
          v
+------------------------+
|  <<FTAEvent>>          |
|  LossOfBraking         |
+------------------------+
          ^
          |
+------------------------+
|  <<LogicGate>>         |
|        OR                         |
+------------------------+
                    ^
         /                    \
        /                       \
       v                         v
+---------------+   +------------------+
| <<FTAEvent>>  |   | <<FTAEvent>>     |
| SensorFails   |   | ActuatorFails    |
+---------------+   +------------------+



1 Integration of SSA and SysML based MBSE

• Enables bidirectional traceability 
between safety artifacts and 
system models

• Enables automated analysis of 
safety models

• Friedenthal, S., Moore, A., & Steiner, R. (2014). A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann
• Thomas, J., Fleming, C. H., & Leveson, N. G. (2021). "STPA Handbook." MIT Partnership for Systems Approaches to Safety and Security.
•  Thomas, J., & Leveson, N. (2013). "Performing STPA with SysML." MIT Partnership for Systems Approaches to Safety and Security (PSASS).
•  Eames, D. P., & Steiner, R. (2017). "Bringing Safety-Critical Systems into MBSE." INCOSE International Symposium, 27(1), 477–489
•  JPL/NASA. (2021). OpenMBEE User Guide https://openmbee.org/
•  Lucio, L., et al. (2021). "Collaborative MBSE with OpenMBEE: A NASA Use Case." INCOSE IS 2021 Proceedings 13
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2 Example: SysML and SSA
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2 Example: SysML and SSA
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2 Example: SysML and SSA
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2 Example: SysML and SSA
Loss of Control
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Note: Assumes independence and no 
common cause or shared hardware
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2 Example: SysML and SSA
 

Hazard: Loss of (Flight) Control

Causes of Loss of Control
• Failure: Actuate Control Surfaces
• Failure: Flight Control
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2 Challenges

1. Representing Fault Trees in SysML

2. Deriving FT from BDD, AD, and IBD

3. Connected Models for Bi-directional Traceability (FT, BDD)

4. Uncertainty Quantification for Fault Trees

5. Interval Analysis for Fault Trees

6. Identifying Common Cause Failures in Fault Trees

7. Calculating Top-Level Prob for FTs with Common Cause
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3-1 Representing FT in SysML – FT Templale

Parametric Diagram

FaultTree Pattern

Provides SysML template 
for capturing a Fault Tree

23Dr Matt Amissah, 2025



3-1 Representing FT in SysML

FaultTree Pattern definition
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3-1 Representing FT in SysML
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3.2 Connected Models
A change in the BDD is 
reflected in the Instance 
Table

A change in the Instance 
Table is reflected in the 

BDD
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3-2 Connected Models
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3-3 Deriving FTs 
Loss of Control
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3-3 Deriving Fault Trees from SysML

F. Mhenni, N. Nguyen and J. -Y. Choley, "Automatic 
fault tree generation from SysML system 
models," 2014 IEEE/ASME International Conference 
on Advanced Intelligent Mechatronics, Besacon, 
France, 2014, pp. 715-720, doi: 
10.1109/AIM.2014.6878163. 29



Challenges in Fault Tree Analysis

1. Rare event probabilities with 
estimates or small sample size 
from testing

2. Missing probabilities
1. Estimated based on previous 

model

2. No estimate available

3. Insufficient Sample Size

3. Common cause failures

30
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Design Challenge

• FT parameters may have no 
supporting data for quantification

• FT parameters may be extreme 
events that are typically rare
o arise from a combination of events 

that may have never been previously 
observed

• Rare-event nature of data makes 
point estimates inherently noisy
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Background

• Probability of Top-Level Event is 
calculated as a Point-Estimate

1. Point-Estimate is the "mode" of a 
distribution representing a 
Confidence Interval

2. Point-Estimate is dependent on 
Point-Estimate probabilities in FT 
nodes with their own Uncertainty 
Distribution
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3.4 Fault Tree Uncertainty Analysis – Insufficient Sample Size

• Primary Flight Control Unit (PFCU):
▪ tested for 1,000 hours
▪ 1 failure is observed
▪ ---> Estimated failure rate is 1E-3 per hour

• How accurate is this?

• Repeat the testing 10 times (i.e., 10 tests of 1,000 hours 
each)
• Resulting failures in each test: 2, 1, 0, 1, 3, 1, 0, 0, 2, 1

• If the true (unknown) failure probability is 1E-3, and the 
component is tested for 1,000 hours, for 63% of the tests ) 
the number of failures observed will not be 1 (i.e., 0 or 2 or 
3…).
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3-4 FT Uncertainty - Replace Point Estimates with Distributions

• Use GAMMA distribution with 
parameters 

• Suppose 1 failure is observed in 1,000 hours 
of testing for primary flight controller
o The point estimate for the failure rate is 1E-3
o Based on the point estimate, the uncertainty 

distribution for the failure rate is a gamma 
distribution with parameters  = 1.5,  = 1,000

• General method: If k failures observed from n 
trials, assign uncertainty distribution for 
failure probability as a gamma distribution 
with parameters  = 0.5 + k,  = n

• Note: Approach based on Bayesian updating 
of Poisson distribution 
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Point
estimate

GAMMA Uncertainty distribution
for failure rate

Nikdel, S., J. Shortle. 2023. A framework for uncertainty assessment in event tree safety models. 
Integrated Communications, Navigation, and Surveillance Conference, Herndon, VA.
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3.4 FT Uncertainty – Calculating Top-Level Uncertainty

Standard approach
• Measure failure probability of each base event (e.g., k failures 

out of n trials)
• Quantify each base event with its point estimate (e.g., k/n)
• Quantify fault tree from bottom-up using AND/OR gate logic

Uncertainty approach
• Measure failure probability of each base event (e.g., k failures 

out of n trials)
• Assign each base event an uncertainty distribution (gamma 

distribution with  = 0.5 + k,  = n)

• Monte Carlo simulation loop:
• For each base event, take a random draw its uncertainty 

distribution
• Quantify the fault tree from bottom-up with AND/OR logic

• Assemble distribution of top-level event and any 
other events of interest

Loss of 
Control

Actuate Control 
Surfaces Fails

OR

Flight 
Controls Fail

Monitoring 
and Arbitration 

Module Fails

Both 
Controllers 

Fail

Flight Control-
Backup

Flight Control-
Primary

OR

A N D

0 0.001 0.002 0.003 0.004 0.005 0.006

0 0.001 0.002 0.003 0.004 0.005 0.006
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3.4 FT Uncertainty – Example Implementation in 
SysML

Loss of 
Control

Actuate Control 
Surfaces Fails

OR

Flight 
Controls Fail

Monitoring 
and Arbitration 

Module Fails

Both 
Controllers 

Fail

Flight Control-
Backup

Flight Control-
Primary

OR

A N D

27 out of 9,000
Gamma ( = 27.5,  = 9,000)

3 out of 200
Gamma ( = 3.5,  = 200)

1 out of 57
Gamma ( = 1.5,  = 57)

1 out of 1,000
Gamma ( = 1.5,  = 1,000)

Test data used to quantified failure probability
Uncertainty distribution for failure probability
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3.4 FT Uncertainty – Example Implementation 
inSysML

• FaultTreePattern is Extended
• LeafNodeProbability is defined a 

GAMMA random variable

37
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3.4 FT Uncertainty – Example Implementation in 
SysML
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3.5 Fault Tree Uncertainty – Interval Analysis

Background:
• Frequently, especially in early 

design phases, one or more nodes 
in a fault tree are unknown

• SME quantify as a range

• What is Risk budget assigned to (new) 
Function to meet Top-level Risk
o What are implications for ranges of other 

nodes in the tree?
o How do constraints on top level 

probabilities flow down to 
requirements on base events?

Loss of 
Control

Actuate Control 
Surfaces Fails

OR

Flight 
Controls Fail

Monitoring 
and Arbitration 

Module Fails

Both 
Controllers 

Fail

Flight Control- 
Backup

Flight Control-
Primary

OR

A N D

No estimate available
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3.5 Fault Tree Uncertainty – Interval Analysis

Design Challenge:

• What is Risk budget assigned to 
(new) Function to meet Top-level Risk
o What are implications for ranges of 

other nodes in the tree?

oHow do constraints on top level 
probabilities flow down to 
requirements on base events?

Loss of 
Control

Actuate Control 
Surfaces Fails

OR

Flight 
Controls Fail

Monitoring 
and Arbitration 

Module Fails

Both 
Controllers 

Fail

Flight Control- 
Backup

Flight Control-
Primary

OR

A N D

No estimate available
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3.5 Fault Tree Uncertainty – Interval Analysis
Theory

• Each node is quantified by a lower bound and upper bound on the event 
probability
• If the probability of an event is completely unknown it's probability interval is [0, 1]
• If lower bound = upper bound, the event probability is known exactly

1 1 1 1

2 2 2 2

1
1

2 2

2
2

1 1
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P ABC

P A B C

P
A

B C

P
A
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





L

A
N

D

Node A Node B

[A1, A2] [B1, B2]

[P1, P2]

Node C

[C1, C2]

Constraints on
 interval bounds

O
R

Node A Node B

[A1, A2] [B1, B2]

[P1, P2]

Node C

[C1, C2]

Constraints on
 interval bounds

1 1 1 1

2 2 2 2

1
1

2 2

2
2

1 1

1

1 (1 )(1 )(1 )

1 (1 )(1 )(1 )

1
1

(1 )(1 )

1
1

(1 )(1 )

P A B C

P A B C

P
A

B C

P
A

B C

B

 − − − −

 − − − −

−
 −

− −

−
 −

− −

L
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3.5 Fault Tree Uncertainty – Interval Analysis
Theory

• Each node is quantified by a lower bound and upper bound on the event 
probability
• If the probability of an event is completely unknown it's probability interval is [0, 1]
• If lower bound = upper bound, the event probability is known exactly
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3.5 Fault Tree Uncertainty – Interval Analysis

A
N

D

Node A Node B

[0, 1] [.4, .4]

[0, .04]

Node C

[.1, .1]

Initially known intervals Derived intervals

A
N

D

Node A Node B

[0, 1] [.4, .4]

[0, 1]

Node C

[.1, .1]

• Node A unknown 
(assign it [0,1]

• Nodes B and C 
known exactly

1 1 1 1

2 2 2 2
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2
2

1 1

P ABC

P A B C

P
A

B C

P
A

AC









• Calculate Interval 
for [P1, P2]
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3.5 Fault Tree Uncertainty – Interval Analysis

A
N

D

Node A Node B

[0, .333] [.3, .4]

[0, .01]

Node C

[.1, .2]

Initially known intervals Derived intervals

A
N

D

Node A Node B

[0, 1] [.3, .4]

[0, .01]

Node C

[.1, .2]

• Top probability 
required <= .01 

• Nodes B and C 
quantified as 
intervals

• Requirements on A?

1 1 1 1

2 2 2 2

1
1

2 2

2
2

1 1

P ABC

P A B C

P
A

B C

P
A

AC









• Calculate Interval 
for [A1, A2]
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3.6 Common Cause Failures

Problem

• Large, complex systems -> Large complex 
FTs

• Where are the Common Cause Failures?

• How to Calculate Top-level Risk with 
common cause failures

• Note:
o When base events are not independent, the 

bottom-up approach of calculating each 
parent from its children does not yield the 
correct result

o An alternate algorithm is required

Loss of 
Control

Actuate Control 
Surfaces Fails

OR

Flight 
Controls Fail

Monitoring 
and Arbitration 

Module Fails

Both 
Controllers 

Fail

Flight Control- 
Backup

Flight Control-
Primary

OR

A N D

OR

Sensor Sensor

OR

Primary 
controller

Backup 
controller
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3.6 Common Cause Failures

• Example: Primary and backup flight 
control use the same (or same type 
of) sensor

Loss of 
Control

Actuate Control 
Surfaces Fails

OR

Flight 
Controls Fail

Monitoring 
and Arbitration 

Module Fails

Both 
Controllers 

Fail

Flight Control- 
Backup

Flight Control-
Primary

OR

A N D

OR

Sensor Sensor

OR

Primary 
controller

Backup 
controller
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3.7 Algorithm for Evaluating Fault Tree with 
Common Cause Failures
• Identify all minimal cutsets in the tree

• A cutset is a set of base events such that if each event in the set occurs/fails, 
then the top event occurs/fails

• A minimal cutset is a cutset such that if any event is removed from the set, it 
is no longer a cutset

• Failure of top event is Pr{any minimal cutset occurs}
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3.7 Example: Minimal Cutsets

• FT for Flight Control minimal cutsets:
• {A: actuator control surface fails}
• {B: monitoring / arbitration fails}
• {C: sensor fails}
• {D: primary controller fails, backup 

controller fails}

• Probability of top event = Pr{any 
minimal cutset occurs} = Pr{A or B or C 
or D} 
• = 1 - (1-Pr{A}) (1-Pr{B}) (1-Pr{C}) (1-Pr{D}) 
• = 1 - (1-0.1)(1-0.2)(1-0.3)(1-0.4*0.5)
• = .5968

Loss of 
Control

Actuate Control 
Surfaces Fails

OR

Flight 
Controls Fail

Monitoring 
and Arbitration 

Module Fails

Both 
Controllers 

Fail

Flight Control- 
Backup

Flight Control-
Primary

OR

A N D

OR

Sensor Sensor

OR

Primary 
controller

Backup 
controller

0.1

0.2

0.3 0.4 0.3 0.548



3.7 CCF: SysML Implementation
Assuming independent sensors, 
Top-level Probability is lower than 
it should be
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3.7 CCF: SysML Implementation
Assuming dependent sensors (i.e. 
Common Cause), Top-level 
Probability is correct (and higher)
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Organization

1. Introduction and Motivation

2. Example: System Safety Analysis and MBSE/SysML Models

3. Advances in Fault Tree Analysis
1. Representing Fault Trees in SysML
2. Connected SysML Models (FT, BDD)
3. Deriving FT from BDD, AD, and IBD
4. Uncertainty Quantification for Fault Trees
5. Interval Analysis for Fault Trees
6. Identifying Common Cause Failures in FT
7. Calculating Top-Level Probability for FTs with Common Cause

4. Future Work
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4 Future Work

• Training Module

• Case Studies

• Pilot Projects
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