# Reinforcement Learning Qualification Process (RLQP):

A Framework for Evaluating Safety and Robustness in Reinforcement Learning

Steven Senczyszyn MTU

Tim Havens MTU

Jason Summers ARiA

Benjamin Werner DEVCOM AC

Benjamin Schumeg DEVCOM AC

9/17/2025







### What is Reinforcement Learning?

#### **Supervised Learning**



"Train and Test"

#### Reinforcement Learning



https://medium.com/ai-for-product-people/what-is-supervised-learning-fa8e2276893e

https://www.kdnuggets.com/2022/05/reinforcement-learning-newbies.html



#### RL Can Learn Complicated Tasks



Competitive Drone Racing



Complex Robotic Manipulation

https://www.science.org/doi/abs/10.1126/scirobotics.adg1462

https://openai.com/index/learning-dexterity/



#### Considerations Must be Taken for Safety-Critical Deployments



https://arxiv.org/abs/2209.08025



### **RLQP Helps Ensure Safety and Reliability**

#### **RLQP V-Model**





### **RLQP Helps Ensure Safety and Reliability**





### RL-STPA for Hazard Analysis and Safety





## RLQP and RL-STPA are Demonstrated for Autonomous Drone Navigation





## System-Theoretic Process Analysis is not Sufficient for RL



STPA Handbook, Leveson and Thomas 2018



#### **How Do We Model Control Structure in RL?**



Reinforcement
Learning is an endto-end process,
unlike traditional
control

STPA Handbook, Leveson and Thomas 2018



#### Subtask Decomposition for End-to-End Learning



Subtasks allow for control elements to be extracted from an end-to-end process



#### **RL-STPA Reworks STPA for RL**





### Perturbation Testing for Evaluation









**Environmental Perturbations** 

Sensor and Action Noise

Partial Observability

**Input Delay** 









## Unsafe Control "AGENT" Actions are Identified





3. Provided Too Early/Late







Unsafe Control Actions lead to hazards and loss scenarios



## Perturbation Testing Exposes Loss Scenarios and Failure Rates

#### **Baseline Condition**



Minimum Separation
Maintained

100% Success Rate

#### **New Obstacle Type**



Minimum Separation Violated

90% Success Rate

#### **Heavy Wind**



Minimum Separation Violated

55% Success Rate



## Countermeasures are Implemented and Safety Requirements Derived







By introducing wind into the training curriculum, the success rate improved from 55% to 95%



#### Summary

- Reinforcement learning can learn complex control structures through trial and error
- RLQP: Framework for implementing safetycritical RL agents
- RL-STPA: Hazard analysis methodology designed for end-to-end learning systems
- Perturbation testing is critical for improving safety, robustness, and performance



#### **Challenges and Future Work**

- RL-STPA requires manual designation of the subtasks
- Automatic subtask discovery
- Combine with formal verification techniques
- Active perturbation selection
- Online adaptation for runtime monitoring



#### Questions?

The work presented here is funded by the Army through STTR-A22B-T002 "Metrics and Methods for Verification, Validation, Assurance and Trust of Machine Learning Models & Data for Safety-Critical Applications in Armaments Systems" (Contract #W15QKN-24-C-0038)

Contact: sasenczy@mtu.edu





