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What is Reinforcement Learning?

Supervised Learning Reinforcement Learning

Training Data ML Algorithm Model Prediction
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Unsaen and
unilabeled data

“Environment”

“Train and Test” “Trial and Error”

https://medium.com/ai-for-product-people/what-is-supervised-learning-fa8e2276893e https://www .kdnuggets.com/2022/05/reinforcement-learning-newbies.html|
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RL Can Learn Complicated Tasks

Competitive Drone Complex Robotic
Racing Manipulation

https://www.science.org/doi/abs/10.1126/scirobotics.adg1462 https://openai.com/index/learning-dexterity/
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Considerations Must be Taken for
Safety-Critical Deployments

Generalization
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RL Framework
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Constraints

Uncertainty, Disturbance

https://arxiv.org/abs/2209.08025
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RLQP Helps Ensure Safety and Reliability
RLQP V-Model

1. AI/ML Requirements 7. System Integration

and Use

2. Algorithm 6. Trained Agent
Implementation and Comparison and
Simulation Environment Quialification

3. Reward and Cost 5. Trained Agent
Functions & Evaluation and
Safety Requirements Validation

4. Algorithm
Training
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RLQP Helps Ensure Safety and Reliability

Use will generate new

1. AI/ML Requirements iotelebeteledtoy o e e 7. System Integration
requirements and Use

2. Algorithm Repeat for all 6. Trained Agent
Implementation and | sulekalekey ——— Comparison and
Simulation Environment algorithms Qualification

3. Reward and Cost 5. Trained Agent
Functions & Evaluation and
Safety Requirements ‘ Validation

4. Algorithm
Training
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RL-STPA for Hazard Analysis and Safety

3. Reward and Cost 5. Trained Agent
Functions & Evaluation and
Safety Requirements ‘ Validation

4. Algorithm
Training
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RLQP and RL-STPA are Demonstrated
for Autonomous Drone Navigation

E Michigan Tech

UNCLASSIFIED // Distribution Statement A. Approved for Public Release. Distribution Unlimited.



UNCLASSIFIED

System-Theoretic Process Analysis is
not Sufficient for RL

STPA
1) Define 2) Model 3) Identify 4) ldentify 5) Derive
Purpose of the Control p=»{ Unsafe Control Loss — Safety
the Analysis Structure Actions Scenarios Requirements

STPA Handbook, Leveson and Thomas 2018

UNCLASSIFIED // Distribution Statement A. Approved for Public Release. Distribution Unlimited.

E Michigan Tech



UNCLASSIFIED

How Do We Model Control Structure in RL?

High
authority
Controller A
z Reinforcement
£ . Learning is an end-
= Controller B |, | Controller C to-end process
g . e ’
g ‘ ‘ unlike traditional
| control
) Controlled Processes
authority
STPA Handbook, Leveson and Thomas 2018
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Subtask Decomposition for
End-to-End Learning

1. Takeoff and Navigation 2. Obstacle Avoidance 3. Descent and Landing
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Subtasks allow for control elements to be
extracted from an end-to-end process
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RL-STPA Reworks STPA for RL

RL-STPA ettt |
| |lterative Process !
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Perturbation Testing for Evaluation
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Environmental Sensor and
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Unsafe Control “AGENT"” Actions are
ldentified

2. Provided in 3. Provided Too 4. Stopped
Wrong Context Early/Late Too Soon
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Unsafe Control Actions lead to
hazards and loss scenarios
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Perturbation Testing Exposes Loss
Scenarios and Failure Rates

Baseline Condition New Obstacle Type Heavy Wind
-— average path
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X (m) X (m) . ' . . . . '
7 6 5 4 3 2 1
X (m)
Minimum Separation Minimum Separation Minimum Separation
Maintained Violated Violated
100% Success Rate 90% Success Rate 55% Success Rate
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Countermeasures are Implemented
and Safety Requirements Derived

S ¥ A

Curriculum Improved Reward Functional Safety
Learning Function Limitations

By introducing wind into the training

curriculum, the success rate improved from
55% to 95%
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Summary

Reinforcement learning can learn complex
control structures through trial and error

RLQP: Framework for implementing safety-
critical RL agents

RL-STPA: Hazard analysis methodology
designed for end-to-end learning systems

Perturbation testing is critical for improving
safety, robustness, and performance
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Challenges and Future Work

RL-STPA requires manual designation of the
subtasks

Automatic subtask discovery

Combine with formal verification techniques
Active perturbation selection

Online adaptation for runtime monitoring

18
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Questions?

The work presented here is funded by the Army
through STTR-A22B-T002 “Metrics and Methods
for Verification, Validation, Assurance and Trust of
Machine Learning Models & Data for Safety-
Critical Applications in Armaments Systems”

(Contract #W15QKN-24-C-0038)

Contact: sasenczy@mtu.edu
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