
Nicole Manno
Data Scientist
September 17th, 2025

A Modular Agent-Based
Architecture for Digital Engineering

Approved for Public Release

Approved for Public Release

Agents are having a moment

• Industry is piloting end-to-end agent
features

• Analysts and roadmaps highlight ‘agentic’
apps

• Open-source frameworks lowered the
barrier (AutoGen, LangChain)

2

Decide

Perceive

Act
Impact depends on the boundary where agents meet data

Approved for Public Release

Approved for Public Release

How Agents Become Brittle

Today
One-off scripts tied to tool/export/API

Small differences stack up when chaining

Weak governance

3

Boundary-first
One-off scripts tied to tool/export/API

Small differences stack up when chaining

Weak governance

Approved for Public Release

Approved for Public Release

Technology Agnostic Integration Architecture

4

Commitment 1

Meaning-First Access

Agents connect by meaning, not
data shape

Self-Contained Agents
Commitment 2

Ingest ⟶ Process ⟶ Publish

I/O
Contracts

Agent

Approved for Public Release

Approved for Public Release

What this buys you

• Plug-in agents – no parsers per tool

• Safe composition – contracts + checks

• Governance by default – run-level provenance

5

Approved for Public Release

Approved for Public Release

What we Borrowed vs. What we Added

6

Multi-Agent Coordination Semantic Interoperability LLM Agent Toolkits

Borrow Borrow Borrow

Add Add Add

Blackboard, OAA, Cougar Smart-M3 LangChain/LangGraph

• Modular agents, distributed
problem solving

• Concept-level IDs, not files • Graphs, multi-agents, HIL
controls

• Ontology-typed I/O contracts
• Design-time schema checks

• Apply to digital engineering
• Bind concepts to agent contract

• Publish-time schema gating
• Ontology-tied I/O between agents

Approved for Public Release

Approved for Public Release

Boundary-First, Technology-Agnostic

7

System Boundary

Engineering Data
Fabric (EDF)

Optional
services (LLM,
solvers, etc.)

Consumers

• Dashboards
• Reports
• APIsObservability & Provenance – run records

(who/what/schema/data/IDs/parameters)

Contract Registry Orchestrator Runtime

Agent A Agent B Agent C

Typed I/O ∙ Versions ∙
Permissions

Design-time
compatibility checks

Queue ∙ Workers ∙
Isolation

ingest ∙ process ∙ publish ingest ∙ process ∙ publish ingest ∙ process ∙ publish

Approved for Public Release

Approved for Public Release

Engineering Data Fabric (EDF)

8

Ontologically Backed Digital Thread
A digital thread that leverages ontologies to semantically
integrate and manage data across the product lifecycle

The EDF is designed to streamline engineering activities
by reimagining processes and removing data access
roadblocks aiding decision making during system
development

The Importance

Approved for Public Release

Approved for Public Release

Agents as Black Boxes

9

Contract (the law)

• input_schema : JSON
Schema + ontology IRIs

• output_schema : JSON
Schema + ontology IRIs

• version: v1.2.0
• permissions:

read:Requirement;
write:Insight

Agents are swappable if they honor the contract

Output
(EDF Conceptsingest ∙ process ∙ publish

Agent

Approved for Public Release

Approved for Public Release

Contracts & Orchestrator

10

Pipelines declare steps + pinned versions. Orchestrator validate schemas at publish time

pipeline.yaml

pipeline:
 - step: extract_requirements
 agent: req-extractor
 version: 1.4.0
 - step: plan_analysis
 agent: planner
 version: 2.1.1
contracts:

req-extractor@1.4.0:
 output: edf:Requirement[]
 planner@2.1.1:
 input: edf:Requirement[]

ingest ∙ process ∙ publish

ingest ∙ process ∙ publish

Orchestrator
Compatibility check:
Output(a) ⟶ Input(B)

Output(req-extractor@1.4.0): edf:Requirement[].id:
IRI
Input(planner@2.1.1): edf:Requirement[].id: string

req-extractor@1.4.0

planner@2.1.1

mismatch

mailto:req-extractor@1.4.0
mailto:req-extractor@1.4.0
mailto:req-extractor@1.4.0
mailto:planner@2.1.1
mailto:planner@2.1.1

Approved for Public Release

Approved for Public Release

Runtime – Queues, Isolation, Short-Lived Tokens

11

Engineering Data
Fabric (EDF)

ingest ∙ process ∙ publish

Agent
Handoff

Provenance (run record): who, agent image digest, contract versions, EDF concept
IDs, timestamps, etc.

Job queue

Worker pool

Auth broker

• payload = IDs + params
• No raw sensitive data

Retry policy: backoff x3
DLQ on final failure

Approved for Public Release

Approved for Public Release

Governance – Observability & Provenance

12

• Audit instantly:
who/what/data/when

• Reproduce: re-run same image +
inputs

• Compare: drift checks across
versions

What this enablesProvenance Record
- run_id
- triggered_by
- agent_image
- contract_versions
- edf_reads
- edf_writes
- params
- started_at
- ended_at
- status

Example Usage: Metis Foundry

System searches through user
uploaded artifacts and the web to
extract end-of-life dates and
recommended replacement parts

Approved for Public Release

Obsolescence Management

Capability Optimization

Digital Thread Chatbot
Ask natural language questions about
integrated data in a digital thread or a
data fabric

Identify gaps and overlaps of capabilities
within a system architecture; provide
reallocation based on optimization
function

13

Metis
Foundry

Approved for Public Release

Approved for Public Release

Conclusion – Standardize the Boundary

• Meaning-first access: agents read/write concepts from the EDF
• Black-box agents: implement ingest, process, publish with typed

I/O contracts
• Safe composition: design-time checks block mismatches
• Predictable runtime: queues, isolation, short-lived tokens
• Governance by default: run-level provenance

14

Contracts ∙ Checks ∙ Runtime ∙ Provenance

Nicole Manno | nicole.manno@mantech.com

Dr. Douglas Orellana | douglas.orellana@mantech.com

Patrick Keen | william.keen@mantech.com

Thank you!
For more information, contact us:

mailto:nicole.manno@mantech.com
mailto:douglas.orellana@mantech.com
mailto:william.keen@mantech.com

Approved for Public Release

Approved for Public Release

References

1. Nii, H. P. (1986). The blackboard model of problem solving. AI Magazine,
7(2), 38-53.

2. Maritn, D. L., Cheyer, A. J., & Moran, D. B. (1999). The Open Agent
Architecture: A framework for building distributed software systems.
Applied Artificial Intelligence, 13(1-2), 91-128.

3. Honkola, J., Laine, H., Brown, R., & Tyrkko, O. (2010). Smart-M3
information sharing platform. In 2010 IEEE Symposium on Computers
and Communications (ISCC). IEEE.

4. Mavroudis, V. (2024). LanChain v0.3 (preprint). Preprints.org.

16

	Slide 1
	Slide 2: Agents are having a moment
	Slide 3: How Agents Become Brittle
	Slide 4: Technology Agnostic Integration Architecture
	Slide 5: What this buys you
	Slide 6: What we Borrowed vs. What we Added
	Slide 7: Boundary-First, Technology-Agnostic
	Slide 8: Engineering Data Fabric (EDF)
	Slide 9: Agents as Black Boxes
	Slide 10: Contracts & Orchestrator
	Slide 11: Runtime – Queues, Isolation, Short-Lived Tokens
	Slide 12: Governance – Observability & Provenance
	Slide 13: Example Usage: Metis Foundry
	Slide 14: Conclusion – Standardize the Boundary
	Slide 15
	Slide 16: References

