

Tailorable Risk-Informed AI Test and Evaluation Strategy (TRAITES) Framework

Systems Engineering Research Center AI4SE & SE4AI Workshop September 17, 2025

Erin Lanus, Ph.D.

Emma Meno

Laura Freeman, Ph.D.

POC: lanus@vt.edu

Research Associate Professor

Research Associate

Deputy Director

Motivating Risk-Based Testing for AI T&E

POV 2: Al different How do we test Al due to data and uses enabled systems to buy down risk? **POV 3: AI T&E currently** POV 1: Know how to for fixing engineering test complex issues, not presystems deployment validation What can testing What is risk? [1] tell us? What system When shouldn't knowledge is a we use testing? precursor to test?

CogEW Example

Figure 1.4 Al situation assessment, decision making, and learning capabilities are relevant for all EW functions.

Table 1.1 EW Activities and Al Counterparts

Al Term	EW Term	
Situation assessment	Electronic support	
Decision making	Electronic protect and electronic attack Electronic battle management	
Execution monitoring	Electronic warfare battle damage assessment	
Learning	Electronic warfare reprogramming (of data and software)	

Current State of AI/ML in Open-Source CogEW Research

AI/ML	CURRENT STATE of AI/ML		CogEW RESEARCH APPLICATIONS
	Models and Algorithms	Toolkits and Libraries	
Deep Learning	ANNsCNNsRNNs	TensorflowKeras	 RF Signal Filtering and Denoising RF Signal Identification and Classification CogEW System Threat Assessment, Strategy, and Behavior Recognition
Computer Vision	• CNNs	You-Only-Look-Once (YOLO)OpenCVPyTorch	 Visually Detecting and Deinterleaving RF Signals LPI Radar Waveform Recognition Target Tracking and Detection
Reinforcement Learning	 Q-Learning DQN and DDQN DDPG	Open AI GymStable BaselinesTensorForce	 Anti-Jamming Decision Making for Cognitive Radio/Radar Jamming Decision Making Against Cognitive Radio/Radar Resource Allocation and Task Scheduling Electronic Reconnaissance and Target Searching

Existing Frameworks

What can we learn from existing frameworks?

Differences in T&E between AI and traditional software [4]

Al risks differ from traditional software [3]

- [3] E. Tabassi, Artificial Intelligence Risk Management Framework (AI RMF 1.0), NIST Trustworthy and Responsible AI, National Institute of Standards and Technology, Gaithersburg, MD, 2023.
- [4] C. Balhanalvy, I. Chen, R. W. Ferguson, J. Lockett, D. Moore, C. Pomales and F. Reeder, "Systems Engineering Processes to Test AI Right (SEPTAR) Release 1," McLean, 2023.

Distillation: Testing Traditional Systems vs. Al

Same as Traditional System

- Fidelity/# points dependent on level of test
- Test decomposed system AND integration
- Metrics chosen based on system requirements
- Domain SMEs involved in test planning
- Security and safety testing apply
- DOE informs test budgeting

Unique to Al

- How requirements are specified (from data)
- How functionality is created (from data)
- Interfaces between Al and other components create new attack vectors
- May not be decomposable (emergent behavior)
- Dynamically varying state of system (online learning)

Positioning Risks Along Al Lifecycle

Hierarchy of Dependencies for Risk-based Level of Test

- Testing to buy down mission-based risk in emerging technology requires appropriate methods, metrics, and test designs for each level
- Focus on what changed in emerging technology without reinventing or forgetting best practices for application domain/legacy system

Test Schedules

- Online Learning/Rapid Retraining
- Environmental Change

System Integration

- Al interaction with other (sub)systems
- Human-machine Team

Learning Components

• Opaque systems that learn from data

Legacy System/Application Domain

- Software and hardware tests
- Test oracle (environment data)

Test Schedule Appropriate to System Change

Recommendation: TRAITES Framework

Al Lifecycle Phase

- data poisoning in initial data collection
- backdoor triggers in post-deployment
- post-deployment adversarial model updates

Problem Domain

- Vehicle Detection
- RF signal Detection
- Misinformation
 Detection

Learning Algorithm

- RL
- CNN
- LLM

Al <> System Interactions

- human-Al interactions
- Al-other software/hardware
- Al-environment

Model Training

Data Preparation

Data Collection

Tailorable Risk-informed AI T&E Strategy (TRAITES) Framework to

- 1. Categorize and enumerate risk introduced by AIES
 - 2. Identify test methods/metrics to reduce risk

Model Testine

