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Background

• Information management officers' 
triage, interpret, and convert text into 
structured, mission-usable products.

• Can a LLM accomplish the same task?
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Unstructured narrative reports 
from multiple sources

Common operating picture:
Maps of logistics infrastructure

“The airport in Bukavu is 
now fully operational”

Bukavu airport open
“The Logistics Cluster 

coordinates the 
transshipment hub in Goma.”

Goma border crossing open

• Situational awareness during disasters 
requires quick synthesizing of 
information from multiple sources



Research Question

• How effectively can ChatGPT extract relevant infrastructure and 
logistics information from text-based disaster reports? 

• How do model configuration parameters, such as version and 
temperature, affect its performance? 

• What strategies can enhance the performance?
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Literature Review 

• Studies highlight LLM capabilities in various tasks:

• Geolocation extraction – Yin et al. (2023)

• Temporal relationship identification – Yuan et al. (2023)

• Dialogue generation – Bai et al. (2023)

• Annotation – Gilardi et al. (2023); Labruna et al. (2023)

• Decision-making in wargame simulations – Lamparth et al. (2024), etc.

• Our task requires deep contextual understanding and domain-
specific knowledge of logistics, and has not been explored
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Task: Extract structured logistics information from 
a narrative report

Text Narrative Report
Structured Data on the 

Status of Logistics Infrastructure (Statements)

5



Methodology Overview 
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Methodology Overview 
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Data: 40 reports from two disasters

• Selected two different disasters
• Tropical Cyclone Freddy in Southeast 

Africa (SEA)
• Earthquake in Turkey/Syria (TRKY)

• Selected two different 
organizations: 
• Broad scope: United Nations Office 

for the Coordination of Humanitarian 
Affairs (UN OCHA)

• Narrow focus on logistics: Logistics 
Cluster (LC) 

• Selected the first 10 documents 
produced by each organization in 
each disaster
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Tropical Cyclone in SE 
Africa

Reports from 
OCHA

Reports from 
LC

Earthquake in 
Turkey/Syria

Reports from 
OCHA

Reports from 
LC



Methodology Overview 
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Experts identified all key logistics information in 
each report

• Guidelines defined what 
counts as “key logistics 
information”

• Consistent process

• Two researchers 
independently labeled 
multiple documents; 
disagreements reconciled.

• Total number of statements 
extracted: 396
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Information to Extract

Status and location of:
• Airports
• Seaports
• Road
• Railways
• Transportation
• Storage
• Fuel
• Coordination services



Methodology Overview 
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ChatGPT extracts statements based on same 
guidelines

• ChatGPT is prompted to extract 
information from each 
document

• Prompts were iteratively 
refined

• Evaluated multiple model 
versions and temperature 
settings to assess variability

12



Methodology Overview 

13

Data
Unstructured text 

reports: sitrep
& meeting minutes

from multiple 
disasters and 
organizations

Compare

Gold Standard

ChatGPT

Gold Standard
Statements 

GPT-Extracted 
Statements

Experts



Comparison
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Gold Standard ChatGPT Extraction

Matched 
statement

Gold Standard ChatGPT Extraction

Mis-match in statement component(s)

GPT did not catch the statement

GPT suggested an incorrect statement

Errors

Procedures ControlledBorder



Performance Metrics

• Recall: How many of the gold standard 
statements does ChatGPT correctly identify?

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝐺𝑜𝑙𝑑 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

• Precision: How many of ChatGPT’s statements 
are in the gold standard (i.e., not “extra”)?

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝐶ℎ𝑎𝑡𝐺𝑃𝑇 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠
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Recall

Gold standard ChatGPT extractions

Precision

Gold standard ChatGPT extractions



Overall Performance
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Performance differs based on source document

Recall
Average line
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Precision

Performance depends on the organization that produced the report

Broad scopeFocused on logistics



Performance does not depend on model parameters
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Performance is consistent across different model versions and temperatures

Recall: LC/TRKY Recall: OCHA/SEA



Improving Performance



Attempt 1: Provide an example

• Will performance improve if the prompt includes 
an example?

• Tested two types of examples

• Internal: from a document produced by the same 
organization in the same disaster

• External: from a document produced by a different 
organization in a different disaster
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Performance improves with internal examples
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Presenting an example from the same dataset improves recall and precision

*External Example: an example from different disaster and organization
** Internal Example: an example from the same dataset



Attempt 2: Remove ambiguity

• Will performance improve if we remove 
ambiguous categories of information?

• Information on coordination was very difficult 
to interpret in the documents

• Tested performance with coordination 
removed from the scope
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Information to Extract

Status and location of:
• Airports
• Seaports
• Road
• Railways
• Transportation
• Storage
• Fuel
• Coordination services



Performance improves when ambiguous 
categories are removed from consideration
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Can LLMs extract a logistics COP from narratives?
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Unstructured narrative reports 
from multiple sources

Common operating picture:
Maps of logistics infrastructure



Conclusions

• Performance depends on the documents!
• Works well for more direct, structured narratives (0.75-0.8 precision, recall) 

• Works less well for broader, less focused narratives (highly variable 
performance)

• Providing relevant examples improves performance

• Performance also depends on the ambiguity of the information to be 
extracted
• Performance was poor in extracting information on coordination services, better 

for airports, seaports, etc.

• Temperature and model version has little impact on performance
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Ongoing Work

• Analyzing the nature of the errors ChatGPT makes

• …and how they can be fixed

• Verifying the results by feeding the model with additional 
information from different sources



Thank you!
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