

#### Context

- The design of aerospace systems involves the management and contextualization of large quantities of information
- This is especially relevant to problem spaces which hope to iterate quickly, but maintain consistency between stakeholder needs, past experience, and empirical observation [1]
- In design, much of this data is expressed in natural language
  - Requirements decomposed from stakeholder needs (RFP, etc.)

#### Context

- The design of aerospace systems involves the management and contextualization of large quantities of information
- This is especially relevant to problem spaces which hope to iterate quickly, but maintain consistency between stakeholder needs, past experience, and empirical observation [1]
- In design, much of this data is expressed in natural language
  - Requirements decomposed from stakeholder needs (RFP, etc.)



What kind of tools might a nextgeneration innovation ecosystem have to support our design and understanding of complex systems?

What is the state of the art of language understanding for design?



## Modeling includes many natural language processing tasks

• Claim:

| Modeling can be considered a task of translating information collected from many sources | Literature Stakeholder needs assessments & requirements Documentation Regulations & incident reports Proposals |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| into a usable form for analysis                                                          | Models (incl. MBSE) Simulations Rulesets Calculations                                                          |
| so that a <b>series of decisions</b> can be made                                         | Constraint analysis Requirements satisfaction Certification                                                    |
| to create a process or product that achieves a desired goal                              | A new design                                                                                                   |



## Modeling includes many natural language processing tasks

• Claim:

| Modeling can be considered a task of translating information collected from many sources | Literature Stakeholder needs assessments & requirements Documentation Regulations & incident reports Proposals |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| into a usable form for analysis                                                          | Models Simulations Rulesets Calculations                                                                       |
| so that a <b>series of decisions</b> can be made                                         | Constraint analysis Requirements satisfaction Certification                                                    |
| to create a process or product that achieves a desired goal                              | A new design                                                                                                   |



### Imagining the future of Model-Based

- Models and documents encapsulate engineering knowledge
  - "Engineering artifacts" = {"models", "documents"}
  - They tell us, in various forms of data (text, geometries, images) about a system of interest
- Engineering artifacts can be expensive to produce
  - Value created by an engineering organization!
  - We'd like to continue to use the ones we have already when appropriate ("reuse")
  - We'd like to build new ones faster ("generation"/"automation")
    - Especially if they're made up of many existing parts





[2]



### **Imagining the future of Model-Based**

- Once we can model physical systems with a high degree of realism, how do they support our engineering processes?
- Imagined future design process
  - Library of models
  - Modeler puts them together to represent a relevant system and environment
  - Decision-maker acts on the outputs of the model
- What questions remain?
  - Better understanding of engineering simulations that we use
  - Automatic sequencing/composition of relevant analytical pipelines
  - Modernized design reviews highly attentive to assumptions and analysis



### Challenges in model-based workflows

- Extracting meaningful insights from old engineering artifacts is hard
  - Need to be able to understand many different ways of representing engineering knowledge
- Effective knowledge management is essential for understanding how, when, and why a model has been used in a simulation workflow
- MBSE shows us "effective knowledge management" is not free
  - translating models into standardized representations can have adoption challenges
  - Integration is a critical adoption issue; tools, models, and/or data repositories need to be linked in some way [1]
  - "Substantial effort upfront to set up a model-based environment" [1]
  - "Introduction of SysML in large organization is hampered by the sheer size of the language and the sometimes awkward user interface to modelling" [2]
  - · Manual workflows do not scale, and require large amounts of upfront training



Henderson, Kaitlin, Thomas McDermott, and Alejandro Salado. "MBSE Adoption Experiences in Organizations: Lessons Learned." Systems Engineering 27, no. 1 (2024): 214–39. https://doi.org/10.1002/sys.21717.

<sup>2.</sup> Herzog, Erik, Jessica Hallonquist, and Johan Naeser. "4.5.1 Systems Modeling with SysML – an Experience Report." INCOSE International Symposium 22, no. 1 (2012): 600–611. https://doi.org/10.1002/i.2334-5837.2012.tb01359.x.

### **Research Objective**

# How do we automatically generate useful representations of engineering artifacts?

- What makes a useful representation of engineering artifacts?
  - What even is a representation of an engineering artifact?
  - Metadata is one...why is generating engineering metadata hard?
- How could we do this with large language models?
  - How good are models at doing metadata generation?
  - How do strong open-source language model options and test-time inference techniques influence performance on the metadata task?
- Today
  - 1. Metadata generation: building a benchmark problem set
  - 2. Generating metadata with LLMs: inference-time techniques for LLM performance
  - 3. Gaps and calls to action



### Why are we trying to describe models?

- Need to know features of models we can use to make decisions
  - Interoperability:
    - How do I integrate multiple models quickly?
    - How do I reconcile models of subsystems which are semantically in conflict?
    - How do I reconcile models across lifecycle phases?
  - Traceability:
    - How do I trace model-driven analysis to downstream decision-making?
- Plumbing behind the scenes of multi-step automatic computational workflows
  - We're proposing digital engineered ecosystems with high-fidelity highdata replicas of existing environments
  - Increased emphasis on MBSE or systems engineering environments
  - · Hard to trust complex modeling ecosystems without it!



### What is metadata? (Berners-Lee)

- "Metadata is machine understandable information about web resources or other things" [1]
- "Information which software agents can use in order to make [1]:
  - Life easier for us

- Check that we can trust what we are doing
- Ensure we obey our principles, the law
- Make everything work more smoothly and rapidly"



#### What is metadata?

### **Dublin Core Metadata Initiative** [1]

- Focuses on title, contextual information
- 15 features

```
Title: "A name for the resource" # A name given to the resource.

Creator: "The entity primarily responsible for creating the resource"

Subject: "The topic of the resource"

Description: "A contextual account of the resource."

Publisher: "The entity responsible for making the resource available'" # An entity responsible for making the resource available.

Contributor: "Any other entities who made contributions to the resource"
```

Dublin Core excerpted features [1]

# **Engineering Simulation Metadata Specification** [2]

- ASSESS Initiative from NAFEMS
- Engineering focused
- 644 features (in a hierarchy)

```
- □ ×

- Access Control
- Identifier
- Description
- Defining Activity
- Simulation Methods: #(Specify all that apply)
- Data-Driven
- Deterministic
- Empirical
- ...
- Physics Domains: #(Specify all that apply)
```

ESMS excerpted features

Model representation feature group [2]



- Dublin Core Metadata Initiative. (2020) DCMI Metadata Terms. https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
- 2. NAFEMS ASSESS Initiative. Engineering Simulation Metadata Specification, Feb. 2024.

### What is engineering metadata?

- "Metadata is machine understandable information about web resources or other things" [1]
- "Information which software agents can use in order to make [1]:
  - Life easier for us

- Check that we can trust what we are doing
- Ensure we obey our principles, the law
- Make everything work more smoothly and rapidly"
- Projects an engineering artifact into a set of features
  - May be useful to both human agents and software agents
  - Author is a feature, "Tim Berners-Lee" is its value
  - These features have a few important properties
    - human-interpretable
    - lower dimension than the full engineering artifact

### Why is generating metadata hard?

Translate

domain-specific knowledge

context

Standardized metadata schema

### **Knowledge Intensive**

- large amount of engineering knowledge about the simulation being described
- additional contextual understanding beyond the simulation to describe them with respect to:
  - their use (computational environment),
  - the part of the world they model (simulated system's environment)

#### **Labor Intensive**

- To wit, filling out large forms is hard
- Disparate features of models may all be included in a single schema
- This translation can be arduous or dull, such that humans fatigue quickly.
- e.g. ESMS is a large schema which organizes
   644 model attributes into a hierarchy

### MetaGator: a metadata aggregator

Solving simulation metadata generation problems with LLMs





### MetaGator: a metadata aggregator

Solving simulation metadata generation problems with LLMs





### Defining the metadata generation problem

- The metadata generation problem takes as input
  - An engineering artifact (one or more, potentially structured)
  - Context (other artifacts known to be relevant to that artifact)
  - A metadata schema element (a specific attribute of a metadata schema which should be populated with a value)
- A solution to a metadata generation problem is an assignment of some value to the metadata schema element
  - Author: Tim Berners-Lee







### Features of metadata generation problems

- (IN) An engineering artifact (one or more, potentially structured)
  - Vary in knowledge domain
  - Vary in format (different modeling languages or document structures)
  - What is useful as a "model" may be made up of multiple files or a large amount of input content
- (IN) Context (other artifacts known to be relevant to that artifact)
  - Input sets range from a single model-document pair to larger collections
  - These may also be inaccurate; engineering repositories can be messy
  - Quality of the artifact itself, depending on who developed the model, the context could be good/bad and applicable/not applicable to the problem you're trying to solve
- (OUT) Key, value pairs of Label: Value for some labels
  - Implicitly that means we need the metadata schema
  - A value to be assigned to a metadata schema element a specific attribute of the metadata schema



### Building a problem set of metadata generation problems

- Need: A dataset of solved examples of the metadata generation task that reflect the real-world variation in the problem
- Issue: existing repositories of engineering artifacts vary wildly



```
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"</pre>
href="http://jsbsim.sourceforge.net/JSBSim.xsl"?>
<fdm config name="737" release="BETA" version="2.0"</pre>
                                                                              <wingarea unit="FT2"> 1171.00 </wingarea>
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                                                                              <wingspan unit="FT">
                                                                                                        94.70 </wingspan>
xsi:noNamespaceSchemaLocation="http://jsbsim.sourceforge.net/JSBSim.xsd">
                                                                              <chord unit="FT">
                                                                                                         12.31 </chord>
                                                                              <htailarea unit="FT2"> 348.00 </htailarea>
                                                                              <htailarm unit="FT">
                                                                                                         48.04 </htailarm>
       <author> Dave Culp </author>
                                                                              <vtailarea unit="FT2"> 297.00 </vtailarea>
       <author> Aeromatic </author>
       <filecreationdate> 2006-01-04 </filecreationdate>
                                                                              <vtailarm unit="FT">
                                                                                                        44.50 </vtailarm>
       <version>$Revision: 1.43 $
                                                                              <location name="AERORP" unit="IN">
       <description> Models a Boeing 737. </description>
                                                                                  <x> 625 </x>
                                                                                  <y> 0 </y>
        censeName>GPL (General Public License)
                                                                                  <z> 24 </z>
        <licenseURL>http://www.gnu.org/licenses/gpl.html</licenseURL>
                                                                              <location name="EYEPOINT" unit="IN">
       This model was created using publicly available data, publicly
                                                                                  <x> 80 </x>
available technical reports, textbooks, and guesses. It contains no
                                                                                  <y> -30 </y>
proprietary or restricted data. If this model has been validated at all, it
                                                                                  <z> 70 </z>
would be only to the extent that it seems to "fly right", and that it
possibly complies with published, publicly known, performance data (maximum
                                                                              <location name="VRP" unit="IN">
speed, endurance, etc.). Thus, this model is meant for educational and
                                                                                  <x> 0 </x>
entertainment purposes only. This simulation model is not endorsed by the
manufacturer. This model is not to be sold.
                                                                                  <y> 0 </y>
                                                                                  <z> 0 </z>
```

Engineering artifact



### Building a problem set of metadata generation problems

- **Need**: A dataset of solved examples of the metadata generation task that reflect the real-world variation in the problem
- Issue: existing repositories of engineering artifacts vary wildly
- Produce a variety of challenges arise in various ways
  - Access
    - E.g. simulation has binary files we can't read, access control
  - Knowledge
    - E.g. the modeling technique or subject of the model is highly technical
  - Context
    - E.g. the model is in a large repo, that repo has poor documentation
  - Interpretability
    - E.g. easier:python scripts vs. harder:airfoil coordinates

The problems in a comprehensive "benchmark" on this task should cover all of these.

### Where does complexity come from?







### Sourcing data for example problems

- Sourcing data for a proof-ofconcept
  - Test cases and tutorials for opensource engineering tools
  - Fairly clean relative to an arbitrary engineering repo
  - Emphasis is infrastructure development







#### **Dataset Sources**

- JBSIM
- Dynamics library
- XML
- Multi-file, some data inputs



```
737

737.xml

INSTALL

cruise_init.xml

cruise_steady_turn_init.xml

reset00.xml

rudder_kick_init.xml
```

- SU2
- Multiphysics library
- Includes several mesh files
- Simple 2-file quickstart example





- JSBSim-Team "jsbsim" https://github.com/JSBSim-Team/jsbsim
- 2. SU2 https://su2code.github.io/
- 3. Su2code SU2 https://github.com/su2code

#### **Dataset Sources**

- ELMER
- Multiphysics library
- Includes several mesh files
- Multi-file, includes data





- OpenMDAO
- Optimization framework for coupled multidisciplinary problems
- Tutorial split into python and markdown docs



Hohmann Transfer Example - Optimizing a Spacecraft Manuever







- 1. Elmer FEM <a href="https://www.elmerfem.org/blog/">https://www.elmerfem.org/blog/</a>
- . ElmerCSC "elmer-elmag" GitHub. https://github.com/ElmerCSC/elmer-elmag/tree/main/FiveCoils
- OpenMDAO Docs https://openmdao.org/newdocs/versions/latest/examples/hohmann\_transfer/hohmann\_transfer.html?highti=hohmann\_
- 4. OpenMDAO "OpenMDAO" https://github.com/openmdao/openmdao

### Our problem set, today

- Where does good source data to build these problems exist?
  - Test cases and tutorials for open-source engineering repositories
  - Today: We build a limited set of examples by grabbing tutorials from SU2, Elmer, JSBSim, and OpenMDAO
  - Future: All tutorials from these tools, and additional tools
- Threats to success
  - The stakeholders with the best test cases and most accurate past engineering repositories won't/can't share
  - Have to solve this: automated knowledge management is a major force multiplier to the whole technical ecosystem
  - Open benchmarks push the field forward
- Future vision
  - More models, more tools, more model forms
  - Repo structure on top of model content, representation



### MetaGator: a metadata aggregator

Solving simulation metadata generation problems with LLMs





### Language model-driven artificial intelligence

- Language models have been shown to provide useful performance on a wide variety of language-based tasks including:
  - Code
    - HumanEval: generate python programs from docstrings [1]
    - SWEBench: generate resolutions to issues 12 open-source Python-repositories [2, 3]
  - Question Answering
    - SQUAD: reading comprehension on Wikipedia articles [4]
    - GPQA Diamond: google-proof PhD-level technical question-answering [5]
  - Schema Usage/Generation
    - SchemaBench (Feb 2025): generating structurally correct, schema-compliant JSON
    - MCP-Bench (Aug 2025): using tools in a wide variety of contexts
  - Progress in agentic software engineering tools may be relevant
    - hard to systematically test since agentic workflow wraps an LLM in closed-source products like Cursor, Lovable, Claude Code, Gemini CLI, etc.
- But our understanding of their performance on SE domain-specific, and problems of engineering simulation context remains limited
  - Benchmarks do not currently reflect systems engineering use cases



<sup>.</sup> Chen et al. (2021) "Evaluating Large Language Models Trained on Code" arXiv preprint: arXiv:2107.03374

<sup>2.</sup> Jimenez et al. (2024). "SWE-bench: Can Language Models Resolve Real-World GitHub Issues?" arXiv preprint arXiv:2310.06770.

Chowdhury et al. (2024) Introducing SWE-Bench Verified from OpenAl

<sup>.</sup> Rajpurkar et al. (2016) "SQuAD: 100,000+ Questions for Machine Comprehension of Text" arXiv preprint: arXiv:1606.05250

<sup>5.</sup> Rein et al. (2023) "GPQA: a graduate-level google-proof Q&A benchmark" arXiv preprint: arXiv:2311.12022

Lu et al. (02.2025) Learning to Generate Structured output with Schema Reinforcement Learning arXiv preprint: <u>arXiv: 2502.18878</u>
Wang et al. (08.2025) MCP-Bench: Benchmarking Tool-Using LLM Agents with Complex Real-World Tasks via MCP Servers": arXiv preprint: <u>arXiv:2508.20453</u>

### The language model: a general surrogate of language tasks





### Prediction quality is input prompt and model weights

**Design Laboratory** 



### Prediction quality is input prompt and model weights



## Generating useful text with large language models



### Ideal properties of a metadata generation system

Who owns the models?

How large?

How to use them?

Model providers

**New Algorithms** 

Additional training

**Open Source** 

**Model Size** 

Inference time techniques

Flexible, cheap to orchestrate

- Fast, cheap to run
  - Runs quickly
  - On consumer-grade hardware
- Scales well to other problems
  - Not locked to a knowledge base
  - Different metadata
  - Different problem sets

- Avoid model-lock
- Enables on-prem



### Ideal properties of a metadata generation system

Who owns the models?

How large?

How to use them?

Model providers

**New Algorithms** 

Additional training

**Open Source** 

**Model Size** 

Inference time techniques

Flexible, cheap to orchestrate

- Fast, cheap to run
  - Runs quickly
  - On consumer-grade hardware
- Scales well to other problems
  - Not locked to a knowledge base
  - · Different metadata
  - Different problem sets

- Avoid model-lock
- Enables on-prem



### Morphology of the MetaGator tool

| Architectural Fea | ature               | Alternatives                        |
|-------------------|---------------------|-------------------------------------|
| Algorithm         | Prompting           | Zero-Shot, Chain-of-Thought, s1     |
|                   | Search              | Self-Refine, Evolutionary prompting |
| Model             | Qwen-2.5-Instruct   | 0.6B, 1.7B, 4B, 7B, 14B             |
|                   | Gemma-3             | 3B                                  |
|                   | Phi-4-mini-instruct | 3.8B                                |
| Retrieval         |                     | None<br>ESMS Definitions            |

**MetaGator Morphological Matrix.** Model names are attached to specific sizes and cannot be combined with model size exhaustively, i.e. there is no 3B parameter variant of Qwen2.5-Instruct.



### MetaGator: a metadata aggregator

Solving simulation metadata generation problems with LLMs





### Generating useful text with large language models

- Two key goals:
  - characterize the performance of current open source LLMs on the metadata generation task
  - figure out how to generally improve that performance
- We'd like to know:
  - If there's a relationship with model size
  - If prompting improves performance on this task
- Our dataset is small; we present some observational case-based results
- Today:
  - Talk about how to score model performance
  - Examine what the plots would look like



### Format matters: making LLM outputs scoreable

- Metrics we care about depends on problem scope
  - How much do we want the model to do?
  - Atomicity: labeling, labeling + formatting,



labeling

```
Tikeys "Iname for the resource" # A name given to the

Creator: "The entity primarily responsible for creating the resource"

Subject: "The topic of the resource"

Description: "A contextual account of the resource."

Publisher: "The entity responsible for making the resource available'" # An entity responsible for making the resource available.

Contributor: "Any other entities who made contributions to the resource"

Date: "A point or period in time associated with the resource"

Type: "The nature or genre of the resource" #e.g., 'Text', 'Image', 'Dataset', 'Report'"

Format: "The file format or physical medium of the resource" # e.g., 'PDF', 'CSV', 'JPEG'"

Identifier: "An unambiguous reference to the resource" # e.g., 'ISBN: 978-3-16-148410-0'

Source: "A related resource from which this resource is derived" # e.g., 'Based on the research paper: XYZ'"

Language: "The language of the resource" #e.g., 'en' for
```

formatting



### **Measuring LLM Performance**

DCMI: Natural language generation

X

Y\_true

Y\_pred

<engineering artifact>

"WR28 Waveguide Bandpass Filter Simulation"

"BandpassFilter"

ESMS: Multi-label classification

<engineering artifact>

["Electromagnetics (CEM) - high frequency", "Multiphysics"]

"Electromagnetics (CEM) - high frequency", "Control"



### **Measuring LLM performance**

DCMI: Natural language generation

Semantic Similarity

- Cosine similarity of embedded tags
- Works for any sequence of text
- Want to see if we are getting close



ESMS: Multi-label classification

Macro-averaged F1

- Harmonic mean of precision and recall
- Averaged over all categories as equal weight
- Balanced dataset, first pass at performance

"High freq. EM"

"Multiphysics"

"Control"

"Multiphysics"

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

### **Model performance**



Preliminary results. Proof-of-concept showing potential outputs of study. Dataset is not yet large enough for rigorous statistical analysis.



#### Notes

- Metrics
  - Formatting is a major bottleneck to extracting useful outputs
  - Semantic Similarity to human-generated labels



#### **Limitations and future work**

- Dataset is very limited compared to the variety of metadata generation problems in the real world
  - Takes a lot of expertise to understand what data tags are correct
  - Results show what we're trying to measure; limited dataset means drawing conclusions would be premature
  - This is a major open challenge; we invite collaborations and expertise(!) on what these benchmarks should look like
- Formatting issues in LLM outputs make results far lower yield than "close" results
  - Invalid JSON due to a missing closing bracket turns into a null score, even when the rest is mostly correct



### **Final thoughts**

- System Engineering Environment
  - How do we represent systems to learn more about them?
- Modeling supports intelligence gathering
  - Can we shorten the modeler's OODA loop?
  - Modeling is a process of developing infrastructure for analyzing the world
  - In turn this produces intelligence/understanding about a system and its environment, even if in simulation
- The way we represent knowledge drives how we can use it
  - Current efforts to build Model Context Protocol servers do exactly this for the language model/agentic AI ecosystem
  - Systems engineering emphasizes modeling and common abstraction formats to do this
    - Requirements engineering
    - SysML



#### Observe Orient Decide Act Loop [1]



Agent model of an Al system Adapted from Russell and Norvig (2010) [1]



- . Wikipedia. "OODA Loop." https://en.wikipedia.org/wiki/OODA loop
- 2. Stuart Russell and Peter Norvig, (2010) Artificial Intelligence: A Modern Approach, 3e.

#### **Discussion**



## Backup

