A Systems Approach for Governable & Sustainable Al

SE4AI 2025

Phil DiBona, LM Fellow, AI Integration Seth Merrifield, AI Machine Learning Engineer Staff Lockheed Martin AI Center

Systems Engineering Challenges for Al

Non-determinism & Bias
Characteristics of Al Training and Inference

Policies and Standards
MIL-STD-882E, DoDD 3000.09, DO-178C, etc.

Al Governance
Human Control and Oversight of Al

Model Drift

Dynamic Operating Environments

Accreditation for Use
Systems Engineering Artifacts Needed

Transparency / Traceability
Help users understand and interpret Al
in the processing chain

Real-World Operations
Deployments from the Edge to the Cloud

Systems Engineering Approach

Al Assurance Framework
Open & Extensible

Capturing Mission Data
Support for Al Sustainment, Transparency
for Governance & Accreditation

Support Human Roles In Governable & Sustainable Al

Systems Eng. & Modeling Specify information needed for Al interoperability & model governance

Al Model Sustainment & Al Assurance have intertwined SE Artifacts

OMEGA: Al Assurance Framework

Operational Monitoring for Ethical Governance of Al / A

In-Mission Monitoring Post-Mission Analysis Provide Data for MLOps

Is AI model performance and/or operating environment consistent with:

- How it was Trained?
- How it was Validated?
- 3. Requirements & Assumptions?

Plugin Categories:

OMEGA: Computer Vision Use Case

Predict: Car
Confidence: 0.85
Image health: 0.95

Predict: Boat
Confidence: 0.85

Image health: 0.35

Image Health "Signal"

Image degradation will determine model performance (accuracy, recall), but model may/may not incorporate input quality assessment: the model will operate on any input.

Assessment of image health (e.g. brightness) using deterministic means provides signal to identify ATR outputs that should be flagged as unreliable: this is separate from confidence levels.

Spotlight: Al / SoS Lineage

Lineage Graphs capture System of Systems Data Flow to provide context to Al Inferences.

End-User Benefits:

Lineage Analytics use SoS context to find and correlate insights into AI- and multi-AI Systems.

Visualizations provided by LM Space

Transparency and Context; Correlate Mission Metrics to SoS Data Flow

MBSE DevKit & Interoperability

Resources for programs and employees starting modeling efforts

Focused Content

- · MBSE articles, standards, profiles, and best practices
- · Reference Architectures
- "Gold Card" information sheets
- Program planning resources
- Common requirements schema
- **Common Training**

Complementary, integrated set of program start-up &

- Decision aids for programs to guide execution
- Linkage to detailed "how-to" guides and articles describing best practices

MBSE Playbook

Robust, consistent, tailorable MBSE process definition

Translation Matrix

Parametric Diagram

The MBSE Dev Kit provides a collection of standardized tools and documentation for rapid adoption of best practices and interoperability

STAR.OS™

- Service Dev Kit (.SDK)
- Interoperability (.IO)
- User Interface (.UI)

Systems, Tactical Apps, Autonomy/AI, Rapid Deployment

DevKit enables the STAR.OS™ Interoperability for Al-infused SoS:

- Requirements
- Interoperability
- Translators
- Configurations

Reference Architecture

- lnteroperability (STAR.OS™)
 - Translators
 - Protocols / Interfaces
- Al Assurance (OMEGA)
 - Al Model MonitoringGovernance Actions
 - Runtime Assurance
 - Post-Mission Analysis
- Data Layer
 - Data Persistence
 - Data Governance
- Lineage (Spotlight)
 - SoS Traceability
 - Lineage Analytics
 - Lineage UX / Assistant
 - Feedback on Al Products

Use Case: Robustness Monitoring & Runtime Assurance (Simplex)

- MBSE DevKit drives interoperability and ensures it is consistent with V&V.
- Parametric Robustness data resulting from Al V&V can drive in-mission monitoring of Al models.

- OMEGA can instantiate a Runtime Assurance Architecture (RTAA) Design Pattern.
- 4 Lineage can help explain why the RTAA was triggered and provide mission data for analysis and model re-training.

Use Case: AI V&V identifies environmental conditions that potentially result in reduced AI Model Robustness.

System Engineering Artifacts

Al Assurance, Governance, & Sustainment, Accreditation

Al Assurance & Lineage Informs MLOps

LOCKHEED MARTIN