Managing Complexity in LLM-
Assisted Software Development:
The Cathedral Framework

Brad Dennis, Ph.D.

AI4SE Workshop - Cognitive Assistants Track
September 17-18, 2025

"Systems Engineering Al that Works"

-
Valkyrie Enterprises, LLC
An I1SO 9001:2015 Certified Company
Huntsville, AL 35802

FNTFRPRISFS

The Problem

Valkyrie

The Problem With Vibe Coding

“Build an interactive personal finance dashboard with animated charts
showing monthly expenses across different categories. Include a
budget tracker with progress bars, an expense input form with
category selection, and a savings goal visualizer. Use modern
glassmorphism design with animated gradients and smooth transitions
between different time periods (daily/weekly/monthly views).”

Available at: https://claude.ai/share/ce3c951b-dbd4-4e6¢c-99e8-c63d030d8cal

Valkyrie oo | 3

ENTERPRISES

The Problem With Vibe Coding

“'m about to starting developing my software
idea, before | start what are all the software

engineering related questions, | need to get
answers for? Be as complete as possible, so

we don't make any mistakes.”

Available at: https://chatgpt.com/share/68c93fa7-b8c8-800f-92fb-0c80ed756aa3

valkyrie.com 4

Valkyrie

It’s Not a Code Problem. It’s a Control Problem.

I'm about to starting developing my software idea, before | start what
are all the software engineering related questions, | need to get

et answers for? Be as complete as possible, so we don't make any
inanceHu

Your Personal Finance SaaS Platform

Thought for 47s

Awesome—here's a thorough, practical pre-dev checklist you can run through and fill in. Keep it as

questions; if you can't answer one confidently, flag it as a risk or a task before coding.
Sian Ub 1) Problem, Outcomes, Scope

* What problem are we solving, for whom, and in what context?

* What outcomes must improve (time saved, revenue, error rate, CSAT)? How will we measure them?
* What's explicitly out of scope for v1 (non-goals)?

s What are success/failure criteria for the MVP and for GA?

* What constraints (time, budget, skills, compliance, platforms) shape v1?

2) Users & Product

* Who are the primary personas? What jobs, pains, and triggers do they have?
» What are the key user journeys and acceptance criteria for each?

* What is the smallest coherent slice that delivers value (your MVP)?

* What edge cases or “unhappy paths” must we handle from day one?

Login < * What's the onboarding flow and first-run experience?

3) Requirements

s * Functional: What must the system do (user stories/use cases)? Prioritize (Must/Should/Could/Won't).
demo@example.com / demo123

* Non-functional: target SLOs (availability, latency), security, privacy, accessibility, scalability, observability,
maintainability.

s Accessibility: which standard (e.g., WCAG 2.2 AA)? Keyboard, screen reader, contrast, captions?

* Internationalization: which locales, time zones, ¢ ¢‘ncies, number/date formats, RTL?

A NAata 2. NAnAin

Valkyrie oo |

Flattened Context = One Giant Lever

» Feels magical — but quickly turns messy

P Flat prompting — all the software engineering collapses
into a stream of tokens, flattening the hierarchy and hiding
complexity

P Flattened hierarchies — semantic cohesion is lost, word
sense Is mixed, model confusion is created

»No evidence — Without structure, there’s nowhere to attach
proofs or trace links to understanding change

We give an LLM one giant lever and expect it to be precise

Valkyrie crmcon | o

Software Engineering Levers

p Software abstractions are control levers - requirements,
iInterfaces, specifications, design patterns, tests, etc. are the
levers humans use to control how we create software systems

» Authority lives in the interface — Interfaces at every level of
abstraction define how a consumer interacts with the software
and creates a binding encapsulation of responsibility within it

P Predictability needs boundaries — abstractions encode what
matters at a level and hide the rest, in effect, it creates a binding
of meaning

P Traceability needs attachment points — flattened hierarchies
lead to invisible decision making

Software abstractions are how we control software development
J}a’kyp’e valkyrie.com 7

Why This Matters

p»Critical systems can't afford hidden complexity - when we
flatten hierarchies with unstructured prompting, boundaries
vanish, and complexity gets buried and becomes and
operational risk.

»DoD/regulated domains demand traceability - audits and
accreditation expect a defensible chain from intent — design —
code — tests. If abstractions aren’t visible, there’s nowhere to
attach proof

P The verification burden is shifting, not disappearing — while
LLMs can accelerate code construction, oversight moves
upstream, and the verification tax just hits later at a higher cost

Valkyrie oo | 8

ENTERPRISES

The Cathedral Framework

Valkyrie

Core Insight: Put the Hierarchy Back in the Loop

»We haven’t forgotten — we just aren’t applying it.
Flattened prompts dissolve hierarchy; the fix is to re-surface the
layers and operate them as levers. Make complexity visible.

P Progressive disclosure is controllable authority.
Each layer grants clear scope boundaries constraining the model’'s
behavior

»Semantic boundaries mean predictable behavior.
Level-scoped language and clear encapsulation boundaries
mitigates hallucinations and improves model understanding

J}a’kypie valkyrie.com 10
ENTERPRISES

Cathedral: From Conceptual to Logical

Transform requirements into encapsulated domain contexts with clear
integration boundaries using domain-driven design (DDD) style language
modeling and analysis. Boundaries are identified and augmented with

J acceptance criteria and other level relevant features, such as non-

Domain

Architecture (LO)

functional-requirements.

Takes an LO specification and transforms it into detailed module
Tactical Design specifications. We transition from conceptual work to logical work by

(L1) analyzing the language again, but this time to organize the responsibilities
into tactical, yet technical, patterns mapped across architectural layers.

Transforms an L1 specification and transforms it into component
Component specifications ready for implementation, where a component is 1to 5
Design (L2) tightly related classes. Appropriate design patterns are applied and
component interactions are mapped.

Valkyrie oo |

Cathedral: to Concrete

Transforms a component specification from L2 into concrete class

(L3) signatures and interfaces. Extracts public and internal contracts, applies
layer-specific patterns, designs method signatures following SOLID

principles, and creates dependency injection patterns. Outputs class

signatures and interface definitions ready for L4 implementation.

Code Structure

Creates tested code using test-driven design(TDD) practices. This is done
Implementation incrementally starting with a class stub and a single ‘golden path’ test and

(L4) ending with a full test suite of happy path, sad path, and edge case tests
and fully realized class.

Valkyrie oo |

Cathedral: Walkthrough (L0 to L1)

We start with requirements as the input into LO:

- id: 15069
when: debugging agent behavior
i-want: goldilocks execution logs for planning steps, reasoning traces, and execution flow
so-i-can: understand exactly what my agent did and why
priority: high

= id: JsS©10
when: executing new agents or revising existing agents)
i-want: easy manifest validation agent-configuration:
so-i-can: ensure my agent configurations are valid id: "CTXoe1”

s sl s type: "core"
priority: high purpose: "Validate and store agent configurations to prevent runtime execution failures”
golden-path:
description: "Developer validates a simple agent manifest and marks it ready for execution”
demonstrates: ["manifest parsing”, "basic validation”, "configuration storage”]

And produce domain

given: "A valid agent manifest with required fields (name, model, basic parameters)”
11 1 when: "Developer runs configuration validation”
ConteXt SpeCIflcatlonS then: "Configuration is validated successfully and marked ready for executien”
. and:
that become the |nputs - "Configuration status shows as validated”
. - "Mo validation errors are reported"
- - "Configuration is available for execution context”

Into L1 " boundary-touchpoints:

- context: "CTX@@2"

interaction: "provides validated configuration for agent execution”

requirements:
- id: "ACCeal"
scenarios:
manifest-validation:
story-refs: ["15010"]
valid-manifest-acceptance:
given: "I have a valid agent configuration manifest”
when: "I validate the configuration"
then: "validation succeeds”
and:
- "configuratien is marked as ready for execution"
- "no error messages are displayed”
invalid-manifest-rejection:
given: "I have an agent configuration with missing required fields”
when: "I validate the configuration”

-
then:; "validation fails with clear error messages” i
and: valkyrie.com 13

ENTERPRISES

Cathedral: Walkthrough (L1 to L2)

a The L1 domain specification gets transformed into module specifications and become the L2 input:

module:
id: "MoDa@l"
name: "agent-configuration-core”
type: "domain”
ddd-classification: "core”
context: "CTXeal"

purpose: |
Manages the complete agent configuratlion Lifecycle including manifest wvalidatilon,
readiness assessment, and state transitions. Encapsulates core business logic for
ensuring agent configurations are valid and ready for execution.

domain-model:
aggregates:
agent-configuration:
root-entity: "agent-configuration”
description: "Represents a complete agent configuration with validation state and readiness status”
operations:
- "yalidate-manifest”
- "mark-ready"
- "get-status”
- "persist-configuration”

entities:
agent-configuration:
purpose: "Root entity managing configuration lifecycle and state transitions"
identity: "configuration-id (UUID or semantic identifier)”

invariants:
- rule: "Configuration can only be marked ready if manifest validation succeeds with no errors”
enfoerced-by: "mark-ready method”
- rule: "validation results must exist before readiness assessment”
enforced-by: "constructor”
- rule: "Manifest must contain required fields (name, model, parameters)”
enforced-hy: "manifest-content censtructor”

Valkyrie oo | 1

ENTERPRISES

Cathedral: Walkthrough (L2 to L3)

e The module specification gets transformed into component specifications:

id: "CMPRAs"

name: "configuration-repository”
module: "MODRAZ"

layer: "infrastructure"

purpase: "Manage persistent storage and retrieval of agenl configurations using Eloguent ORM"

classes:
name; "AfentConfigurationRepositoryImpl”
iype: "repository”
access: “public®
responsibility: “"Repository implementation providing domain contract fulfillment and transaction coordination®
- name: "AgentConfiguration”
type: "sloguent-model”
access: "internal”
responsibility: "Eloquent model for agent configuration persistence with relationships”
- name: "ValidationResult"”
type: "eloquent-model”
access: "internal”
responsibility: "Eloguent model for walidation result persistence linked to configurations®

component-interface:
public-contracts:
- class: "AgentConfiguraticnRepositoryImpl”
methods:
- nama: “save"
signature: "save(AgentConfiguration $configuration): Result<voids"
purpose: "Persist agent configuration with transactiomal filesystem coordination”
returns; "Result monad with success or DatabaseConnectionException|DuplicateConfigurationException”
- name: "findByILd”
signature: "findById{AgentId %id): Result<?AgentConfigurations"
purpose; “"Retrieve configuration by unigue identifier with eager-loaded validation results”
returns: "Result meonad with AgentConfiguration instance or null if net found”

- TAATY ~+ o~

Valkyrie iz | 1

ENTERPRISES

Cathedral: Walkthrough (L3 to L4)

° Component specifications get transformed into class signatures:

Valkyrie

namespace Infra\AgentConfiguration\Repositories;

use Domain\AgentConfiguration\Entities\AgentConfiguration;
use Domain\AgentConfiguration\ValueObjects\ReadinessStatus;
use Shared\ValueObjects\Result;

use Shared\ValueObjects\AgentId;

use Illuminate\Support\Collection;

class AgentConfigurationRepositoryImpl

{
public
public
public
public
public
public
public
public

function
function
function
function
function
function
function
function

save(AgentConfiguration $configuration): Result;
findById(AgentId $id): Result;

delete(AgentId $id): Result;

exists(AgentId $id): Result;

findA11l(): Result;

findReadyConfigurations(): Result;
findByReadinessStatus(ReadinessStatus $status): Result;
countByReadinessStatus(ReadinessStatus $status): Result;

valkyrie.com

16

Cathedral: Walkthrough (L4 to Working Code)

6 The class signatures are used to anchor the L4 TDD incremental workflow to

produce working code and tests:

namésbace Infra\AgentConfiguration\Repositories;

use
use
use
use
use
use
use

Domain\AgentConfiguration\Entities\AgentConfiguration;
Domain\AgentConfiguration\ValueObjects\ReadinessStatus;
Shared\valueObjects\Result;
Shared\ValueObjects\AgentId;
Illuminate\Support\Collection;
IlTluminate\Contracts\Filesystem\Filesystem;
RuntimeException;

class AgentConfigurationRepositoryImpl

{

public function __ construct(
private Filesystem $filesystem

)

}

public function save(AgentConfiguration $configuration): Result

{

throw new RuntimeException("not implemented");

}

public function findById(AgentId $id): Result

{ throw new RuntimeException("not implemented");
}

public function delete(AgentId $id): Result

i throw new RuntimeException("not implemented");

Valkyrie

ENTERPRISES

use Infra‘\AgentConfiguration\Repositories\AgentConfigurationRepositoryImpl;
use Domain\AgentConfiguration\Entities\AgentConfiguration;

use Shared\ValueObjects\AgentId;

use Shared\ValueObjects‘\Result;

use Illuminate\Contracts\Filesystem\Filesystem;

beforeEach(function () {
$this—>filesystem = Mockery::mock(Filesystem::class);
$this—repository = new AgentConfigurationRepositoryImpl($this—=filesystem);
$this—agentId = new AgentId('agent-123');

)i

it('finds an agent configuration by id successfully’, function () {
// Arrange
$configData = [
‘id' = 'agent-123',

‘name’ = 'Test Agent’,
'description’ = 'A test agent configuration',

‘model’ = 'gpt-4',

"temperature’ = 0.7,

'max_tokens' = 1000,

"system_prompt’ = 'You are a helpful assistant.’,
'readiness_status' = 'ready’,

"created_at’ = '2024-01-01T00:00:0072°,
'updated_at' = '2024-01-01T00:00:00Z2'

1i

$this—filesystem
—»shouldReceive(‘exists’)
—ance()
—with('agent-configurations/agent-123.json")
—andReturn(true);

$this—>filesystem
—shouldReceive('get")
—once()

=with('agent-configurations/agent-123.json")
VAIRYIIE.CUILTI I s

Cathedral: Key Mechanisms

P Abstraction discipline: level-scoped language that's congruent
with and contextual boundaries aligned with the software
engineering task

P Digital threads: a structured process with intermediate artifacts
enables traceability and transparency.

» Goldilocks principle: since tasks are well defined and
appropriately scoped, we can engineer just the right amount of
context for the LLM to understand our intent and steer its work

»Failing Fast: early defects cascade and surface quickly

Valkyrie iz | 1

ENTERPRISES

Principles & Heuristics You Can Use Today

»Semantic cohesion is paramount — everything in your prompt influences the
LLMs behavior, the instructions must be aligned with the task.

»Polysemy can confuse LLMs — word sense matters, if an LLM stubbornly
misbehaves, look for explicit or implicit mixed word sense.

»Too big to comply — if the LLM consistently ignores your output format or key
iInstructions, the context is probably too large

»Too small to contextualize — if the LLM adheres to your output format, but
repeatedly misses something important, your context probably needs
augmentation.

»Too helpful — when the LLM consistently over-engineers or over-produces,
your task is probably not bounded enough, or your language carries hidden
implications: e.g., “You are an expert back-end developer...”

Valkyrie iz | 1

ENTERPRISES

	Slide 1: Managing Complexity in LLM-Assisted Software Development: The Cathedral Framework
	Slide 2: The Problem
	Slide 3: The Problem With Vibe Coding
	Slide 4: The Problem With Vibe Coding
	Slide 5: It’s Not a Code Problem. It’s a Control Problem.
	Slide 6: Flattened Context = One Giant Lever
	Slide 7: Software Engineering Levers
	Slide 8: Why This Matters
	Slide 9: The Cathedral Framework
	Slide 10: Core Insight: Put the Hierarchy Back in the Loop
	Slide 11: Cathedral: From Conceptual to Logical
	Slide 12: Cathedral: to Concrete
	Slide 13: Cathedral: Walkthrough (L0 to L1)
	Slide 14: Cathedral: Walkthrough (L1 to L2)
	Slide 15: Cathedral: Walkthrough (L2 to L3)
	Slide 16: Cathedral: Walkthrough (L3 to L4)
	Slide 17: Cathedral: Walkthrough (L4 to Working Code)
	Slide 18: Cathedral: Key Mechanisms
	Slide 19: Principles & Heuristics You Can Use Today

