
Managing Complexity in LLM-
Assisted Software Development:
The Cathedral Framework

Valkyrie Enterprises, LLC
An ISO 9001:2015 Certified Company
Huntsville, AL 35802

Brad Dennis, Ph.D.

AI4SE Workshop - Cognitive Assistants Track

September 17-18, 2025

"Systems Engineering AI that Works"

valkyrie.com 2

The Problem

valkyrie.com

The Problem With Vibe Coding

“Build an interactive personal finance dashboard with animated charts

showing monthly expenses across different categories. Include a

budget tracker with progress bars, an expense input form with

category selection, and a savings goal visualizer. Use modern

glassmorphism design with animated gradients and smooth transitions

between different time periods (daily/weekly/monthly views).”

3

Available at: https://claude.ai/share/ce3c951b-dbd4-4e6c-99e8-c63d030d8ca0

valkyrie.com

The Problem With Vibe Coding

“I'm about to starting developing my software
idea, before I start what are all the software
engineering related questions, I need to get
answers for? Be as complete as possible, so
we don't make any mistakes.”

4

Available at: https://chatgpt.com/share/68c93fa7-b8c8-800f-92fb-0c80ed756aa3

valkyrie.com

It’s Not a Code Problem. It’s a Control Problem.

5

valkyrie.com

Flattened Context = One Giant Lever

6

▶Feels magical – but quickly turns messy

▶Flat prompting – all the software engineering collapses

into a stream of tokens, flattening the hierarchy and hiding

complexity

▶Flattened hierarchies – semantic cohesion is lost, word

sense is mixed, model confusion is created

▶No evidence – Without structure, there’s nowhere to attach

proofs or trace links to understanding change

We give an LLM one giant lever and expect it to be precise

valkyrie.com

Software Engineering Levers

7

▶Software abstractions are control levers - requirements,
interfaces, specifications, design patterns, tests, etc. are the
levers humans use to control how we create software systems

▶Authority lives in the interface – Interfaces at every level of
abstraction define how a consumer interacts with the software
and creates a binding encapsulation of responsibility within it

▶Predictability needs boundaries – abstractions encode what
matters at a level and hide the rest, in effect, it creates a binding
of meaning

▶Traceability needs attachment points – flattened hierarchies
lead to invisible decision making

Software abstractions are how we control software development

valkyrie.com

Why This Matters

8

▶Critical systems can't afford hidden complexity - when we
flatten hierarchies with unstructured prompting, boundaries
vanish, and complexity gets buried and becomes and
operational risk.

▶DoD/regulated domains demand traceability - audits and
accreditation expect a defensible chain from intent → design →
code → tests. If abstractions aren’t visible, there’s nowhere to
attach proof

▶The verification burden is shifting, not disappearing – while
LLMs can accelerate code construction, oversight moves
upstream, and the verification tax just hits later at a higher cost

valkyrie.com 9

The Cathedral Framework

valkyrie.com

Core Insight: Put the Hierarchy Back in the Loop

10

▶We haven’t forgotten – we just aren’t applying it.

Flattened prompts dissolve hierarchy; the fix is to re-surface the

layers and operate them as levers. Make complexity visible.

▶Progressive disclosure is controllable authority.

Each layer grants clear scope boundaries constraining the model’s

behavior

▶Semantic boundaries mean predictable behavior.

Level-scoped language and clear encapsulation boundaries

mitigates hallucinations and improves model understanding

Abstraction discipline is an engineering response to the failures of vibe coding

valkyrie.com

Cathedral: From Conceptual to Logical

11

Domain

Architecture (L0)

Transform requirements into encapsulated domain contexts with clear

integration boundaries using domain-driven design (DDD) style language

modeling and analysis. Boundaries are identified and augmented with

acceptance criteria and other level relevant features, such as non-

functional-requirements.

Tactical Design

(L1)

Takes an L0 specification and transforms it into detailed module

specifications. We transition from conceptual work to logical work by

analyzing the language again, but this time to organize the responsibilities

into tactical, yet technical, patterns mapped across architectural layers.

Component

Design (L2)

Transforms an L1 specification and transforms it into component

specifications ready for implementation, where a component is 1 to 5

tightly related classes. Appropriate design patterns are applied and

component interactions are mapped.

valkyrie.com

Cathedral: to Concrete

12

Code Structure

(L3)

Transforms a component specification from L2 into concrete class

signatures and interfaces. Extracts public and internal contracts, applies

layer-specific patterns, designs method signatures following SOLID

principles, and creates dependency injection patterns. Outputs class

signatures and interface definitions ready for L4 implementation.

Implementation

(L4)

Creates tested code using test-driven design(TDD) practices. This is done

incrementally starting with a class stub and a single ‘golden path’ test and

ending with a full test suite of happy path, sad path, and edge case tests

and fully realized class.

valkyrie.com

Cathedral: Walkthrough (L0 to L1)

13

0 We start with requirements as the input into L0:

1
And produce domain

context specifications

that become the inputs

into L1:

valkyrie.com

Cathedral: Walkthrough (L1 to L2)

14

2 The L1 domain specification gets transformed into module specifications and become the L2 input:

valkyrie.com

Cathedral: Walkthrough (L2 to L3)

15

3 The module specification gets transformed into component specifications:

valkyrie.com

Cathedral: Walkthrough (L3 to L4)

16

4 Component specifications get transformed into class signatures:

valkyrie.com

Cathedral: Walkthrough (L4 to Working Code)

17

4 The class signatures are used to anchor the L4 TDD incremental workflow to

produce working code and tests:

valkyrie.com

Cathedral: Key Mechanisms

18

▶Abstraction discipline: level-scoped language that’s congruent

with and contextual boundaries aligned with the software

engineering task

▶Digital threads: a structured process with intermediate artifacts

enables traceability and transparency.

▶Goldilocks principle: since tasks are well defined and

appropriately scoped, we can engineer just the right amount of

context for the LLM to understand our intent and steer its work

▶Failing Fast: early defects cascade and surface quickly

valkyrie.com

Principles & Heuristics You Can Use Today

19

▶Semantic cohesion is paramount – everything in your prompt influences the

LLMs behavior, the instructions must be aligned with the task.

▶Polysemy can confuse LLMs – word sense matters, if an LLM stubbornly

misbehaves, look for explicit or implicit mixed word sense.

▶Too big to comply – if the LLM consistently ignores your output format or key

instructions, the context is probably too large

▶Too small to contextualize – if the LLM adheres to your output format, but

repeatedly misses something important, your context probably needs

augmentation.

▶Too helpful – when the LLM consistently over-engineers or over-produces,

your task is probably not bounded enough, or your language carries hidden

implications: e.g., “You are an expert back-end developer…”

	Slide 1: Managing Complexity in LLM-Assisted Software Development: The Cathedral Framework
	Slide 2: The Problem
	Slide 3: The Problem With Vibe Coding
	Slide 4: The Problem With Vibe Coding
	Slide 5: It’s Not a Code Problem. It’s a Control Problem.
	Slide 6: Flattened Context = One Giant Lever
	Slide 7: Software Engineering Levers
	Slide 8: Why This Matters
	Slide 9: The Cathedral Framework
	Slide 10: Core Insight: Put the Hierarchy Back in the Loop
	Slide 11: Cathedral: From Conceptual to Logical
	Slide 12: Cathedral: to Concrete
	Slide 13: Cathedral: Walkthrough (L0 to L1)
	Slide 14: Cathedral: Walkthrough (L1 to L2)
	Slide 15: Cathedral: Walkthrough (L2 to L3)
	Slide 16: Cathedral: Walkthrough (L3 to L4)
	Slide 17: Cathedral: Walkthrough (L4 to Working Code)
	Slide 18: Cathedral: Key Mechanisms
	Slide 19: Principles & Heuristics You Can Use Today

