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Hybrid Mechanisms of Sociotechnical Systems

] Socio-Technical Systems (STS): The
Intersection of Organic (BU, Evolving) and
Engineered (TD, Controlled) Systems.

J Synergy or Discord: Interplay Between Top-
Down and Bottom-Up Forces in STS.

J Embracing Inherent Forces: Different from
“human error”; Suppression is Not the
Solution.

J Governance Perspective: Fostering
Synergistic Mechanisms through Effective
Bottom-Up Dynamics. Can’t Force a desired
Bottom-up Dynamic.



Synergistic Adaptive Governance (SAG)

Level,

J Working definition: A set of precautions
throughout the lifecycle of the system that
enable effective bottom-up mechanisms
through top-down design.

Top-Down Measures
(Option Design, Governing
Behavioral Response

(] Steering Emergence: e.g.
Resilience/cooperation/ trust as an emergent
property.

Level,.,

Behavioral Response to
both environment and
TD

(1 Broad notion of TD design: includes system's
architecture, incentives, and regulations.

[ Can be extended to more levels of hierarchy:
Enabling effective lower-level responses
through higher-level design.



Two Pillars of Synergistic Adaptive Governance

d Enabling Effective recovery through Option Design

J Guiding the Behavioral Response

Passive Intervention Active Intervention

£~ 3 M~

1 There is an overlap because of how system
structure/architecture co-evolves with agents’
behavior.

Structural

Options Governing
Behavioral

Response

Option Design

Collective
Behavior

(J Al can make this overlap more significant by:
J Making Option Design Adaptive - ) - )
J Expanding the types of options (architecture,
resources, information)
J Using adaptive options to steer the collective
behavior
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Governance through Option Design

-

_a Redundancy

J Options are rights, but not
obligations, of executing a decision in
the future (if it is beneficial).

J Embedding options at higher level
enables effective behavioral response
at lower levels.

d Many different forms; | categorize
them into four clusters, in the order of

complexity (gaining lower fixed and ) Adaptive
transaction-cost). (3 & Options (Al-
based)

Heydari, Babak, Mohsen Mosleh, and Kia Dalili. "From modular to distributed open architectures: A unified decision framework." Systems Engineering 19.3 (2016): 252-266.



Hierarchical SoS governance framework
Iterative Agent-Based Reinforcement Learning (IAB-RL)

) Hierarchy of autonomy (sub-systems, systems, SoS)

O Iterative Agent-Based Reinforcement Learning (IAB-RL)

O The higher-level RL learns to adjust the set of options available to each agent in the layer below.

d Can move the SoS away form inefficient Nash Equilibrium to more efficient outcomes, without
compromising the autonomy of individual agents.

O Seeking interpretability in learned policies.

TIER Il Learning

Resource Resource
Managing Managing
Agent 1 Agent 2

Resources
Coordination

SoS Observation 1
Resource Options 1

SoS Observation 2

Local observations Local observations
and resource updates and resource updates

SoS Constituents SoS Constituents
(Agentsin Actions Actions (Agentsin
sub-system 1 sub-system 2)

TIER I Learning

Chen, Qiliang, and Babak Heydari. "The SoS conductor: Orchestrating resources with iterative agent-based reinforcement learning." Systems Engineering (2024).



TIER Il Learning

Two-Tier adaptive
governance framework
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SoS Observation
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Resource Options
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Local observations and resource updates

Lo
. . . . Actions (Agents)
* First implementation: A two-tier SoS A

* A multi-robot navigation problem using
modified OpenAl environment (agents
needs to coordinate to spread on
landmarks as soon as possible with less

collision. PN
¢ .
* Resource managing agents can assign two N ORI RSN S
types of resources to agents: additional ‘ ! N B i
o . . o . ‘ 2 ‘~* “' Agent Vision,
vision range and enabling communication R bl o |22 R copmcen
between agents. o | . * oon
* The policies of agents and manager are R

represented using Deep neural networks.

Chen, Qiliang, and Babak Heydari. "Dynamic Resource Allocation in Systems-of-
Systems Using a Heuristic-Based Interpretable Deep Reinforcement Learning." Journal
of Mechanical Design 144.9 (2022): 091711.



The distribution of resource usage through time
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* Efficient Governance: Performance o1
comparison between the RL manager and a 0 T
manager using a baseline policy shows that
the RL manager achieves Pareto . Comparison of using different strategies
optimality across all methods in terms of Com
performance and resource usage. -
* Interpretability: Distribution of resource
usage over time as dictated by the RL 20~
manager's learned policy. An interesting -
pattern emerges where it initially allocates " 0-
expensive resources but shifts to cheaper
resources once the agents start ~40 -
coordinating independently.
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Chen, Qiliang, and Babak Heydari. "Dynamic Resource Allocation in Systems-of-
Systems Using a Heuristic-Based Interpretable Deep Reinforcement Learning." Journal
of Mechanical Design 144.9 (2022): 091711.



Experiment results — behavioral analysis
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The left figure displays the ratio of different resource usages by the RL manager, with varying
importance weights between performance and resources. A clear pattern emerges: as resources
become more expensive, the RL manager learns to use fewer resources.

The right figure details the ratio of different resource usages by the RL manager, influenced by varying
costs between two types of resources. It shows a distinct pattern: as the cost of one type of resource
increases, the RL manager learns to use less of it and shifts towards utilizing the other type.



Generalized two-tier framework

TIER Il Learning
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* A generalized version of the two-tier framework involves a system comprising multiple subsystems, each
responsible for different tasks. In this model, not only do agents need to interact with each other, but
resource managers also must coordinate with one another due to the generally limited availability of
resources.

* The objectives of the resource managers extend beyond optimizing the performance of their own
subsystems to also enhancing the performance of other subsystems. The weighting of these objectives
depends on the level of coordination between the subsystems.



Performance of sub-system under different resource budget
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Adaptive network intervention
for multi-agent systems



Variational Auto Encoder + Reinforcement Learning (VAE-RL) framework

O Dynamic Communication Access

O Heterogeneous Options - Dynamic Network
Structure

O VAE to embed large action space to a few
latent variables; then use continuous RL
policies to control these latent spaces.
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Experiment results

Comparison of different policies in 10-agents system

The distribution of communication network through time
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Direct Modeling of Competition and social dilemmas among agents
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ST S (oA R & ™ . . . .

PG PR N ¥R dilemma and balancing cooperation/competition.

Q{ O What if we dynamically change the network structures?

(C)
8 os |00 -
Z o3 ../ Gianetto, David A., and Babak Heydari. "Network modularity is essential for evolution
%‘ ] 0a| of cooperation under uncertainty." Scientific reports 5.1 (2015): 9340.
= 00 4 02
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T (greed) —»

O Graph Neural Networks are good candidates, but...

O Introducing a new model (HGRL) based on the idea of link
separability.

O Evolutionary Prisoners’ Dilemma on Networks (Social
Learning + Strategic Behavior)

1 Learns to identify source and destination separately

First order
. neighbor

Node state S / \

S~ \\
Action: add or ‘ NEERRRERET ST :l/ b ' Node
. delete links | \ Select a node '\\ \I\’, agent

| . to intervene S--7
s \
Second order ~ Observation from

neighbor . ~ others’ states A link to add
or delete from
selected node
Own state Link

Represent the network using
Graph Neural Network

Heydari, Babak, Mohsen Mosleh, and Kia Dalili. "Efficient network structures with
separable heterogeneous connection costs." Economics Letters 134 (2015): 82-85.




Comparison of methods under different levels of social learning

Exp e ri m e nta l 0 Imitation probability 0 . Imitation probability 0.5 7 Imitation probability 1.0

- - 0
Results I r
—10- -10- =10
wn wv w
o < <4
o o o
[v] o o
@ a @
g -15- @ -15- g -15
o o °
g g g
Z Z <
—20- —20- =20
—-25- —25- =25
B Average social welfare B Average social welfare B Average social welfare
B Final social welfare B Final social welfare B Final social welfare
-30 -30 -30

' ' ' ' ' ' ' ' '
HGRL Flat-RL Random HGRL Flat-RL Random HGRL Flat-RL Random

0.5 imitation
probs

COOPERATION ok DEFECTION

COPERATION — DEFECTION

1.0 imitation
probs

Early phase Middle Late phase



Governance through Network Design in multi-equilibria systems

Efficient Structure
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Decentralized recovery based on agents” decisions

Figure 2: Different elements and scenarios for decentralized recovery analysis for networked

systems: Three stages (G1-G3) and example corresponding network structures.

Let £ be the set of all possible equilibrium states, e* be the set of desired
equilibria, ey be the initial state, C(eg,e) be the transition cost from state e

to state e, and P and C be sets of properties and costs, respectively.
We formally define G'(S) as follows:

Vp € P.

subjectto e € e,

Maddah, Negin, and Babak Heydari. "Building back better: Model/ng decentra//zed recovery in sociotechnical systems using strategic network
dynamics." Reliability Engineering & System Safety 246 (2024): 110085.



Future Directions: Digital Twins of Sociotechnical
systems using (LLM+SAG)

Overview: Model Training, Validation, and Comparison
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Loré, Nunzio, and Babak Heydari. "Strategic behavior of large language models and the Lore, Nunzio, and Babak Heydari. "Large Model Strategic Thinking, Small Model Efficiency:
role of game structure versus contextual framing." Scientific Reports 14.1 (2024): 18490. Transferring Theory of Mind in Large Language Models." arXiv preprint arXiv:2408.05241 (2024).
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