Challenges of Trustworthy
Human/Al Teaming
In Long-running Relationships

ENGINEERING Peter Denno
LABORATORY Kyoung-Yun Kim

Nicolas Lelouche

Outline

1) Scope
2) Teaming example — schedulingTBD
3) Design for trustworthy teaming

4) Summary and future plans

Teaming Is working together

* Teaming on physical tasks requires situation awareness.

 Teaming on cognitive tasks requires shared understanding.

* Teaming on|/ong-running cognitive tasks|requires
remembering what you committed to and why.

Manufacturing

 Manufacturing involves a long-running relationship to a routine.

Product
e
[Mental
models
The Routine)
z z z MlnimiZe A
Human analysts M Waste

Manufacturing

 Manufacturing involves a long-running relationship to a routine.
* Not all models are mental models.

The Routine

Product

0/
[Mental
models

Human analysts

formulate

Recommendations for direct action (e.g. digital twins)
“Supporting Technology”

Research question

Can HMT help manufacturing experts learn to use
manufacturing's supporting technologies to improve
their productivity and competitiveness?

Qo Y -
"ec“ac . =
|9 1 1 1 Product

0/
[Mental
models

Human analysts

The Routine

formulate

Recommendations for direct action (e.g. digital twins)

: : “Supporting Technology”
HMT = Human / Machine Teaming PP J % 6

Research question

Can HMT help manufacturing experts learn to use
manufacturing's supporting technologies to improve
their productivity and competitiveness?

The teaming involves mentoring human participants in
the use of the supporting technology.

Enhancing Operations with
New Supporting Technology using HMT

[|
| venel

The Routine X
Formulate t P PP

with HMT Human analystsf

& B

Recommendations for direct action (e.qg. digital twins)

“Supporting Technology”
= d New Model

[)
@ : human
: : machine

Possible Applications

Integrating a digital twin into your production operations

Integrating interactions with supply chain partners

Systems engineering of entire systems

Formulate a solution for some supporting technology using a domain-specific language.
+ Examples: designing digital twins, production scheduling systems,...

WO
0“ ke Q
I-I
Product
I
[|
[Mental
models
The Routine N X o

‘ ‘ ‘ formulate
Human analysts Waste

Recommendations for direct action (e.g. digital twins)
“Supporting Technology” 9

Outline

1) Scope

2) Teaming example — schedulingTBD
3) Design for trustworthy teaming

4) Summary and future plans

10

schedulingTBD

Interviewer, Mon Aug 12 2024

Process ® B < -

| suppose processing times for each of the steps you just mentioned might
int : nProducts = 1;

vary from product to product. But generally speaking, how long does each set of int: Product = 1..nProducts;
RESANIEES step take? Please produce a list just like the one you did for process steps, ST Tk - ngtigiSﬂEgpaf”ﬁgﬁfgriﬁgtigg’ Pl o B R e R
one process per line, but append to each line the typical processing time in array [Product, Task] of float: taskDuration = [|2.000, 1.000, 1.5600, 1.000, 0.500, 2.000,
Data parentheses. float : minTime = 0;

% It shouldn't take longer than doing only one thing at a time.
float : maxTime = sum (p in Product, t in Task) (taskburation[p, t]);

% We assume a task uses one major resource; resources are synonymous with tasks.
array [Product, Task] of var minTime..maxTime: taskStarts; % 'var' means it is a decision \
array [Product, Task] of var minTime..maxTime: taskEnds;

% This is used in the constraint below.
predicate no_overlap(var float:s1, float:d1, var float:s2, float:d2) = s1 + dl1 <= s2 \/ s2

% Ensure that no two Products aren't using the same resource (task) at the same time.
constraint forall (t in Task)
(forall (i,k in Product where i < k)
(no_overlap (taskStarts[i,t], taskDuration[i,t], taskStarts[k,t], taskDuraf

% We assume no tasks are running now, so the first task of some product can start now.
constraint exists (p in Product) (taskStarts[p, materialPrep] = 0);

% Starting some time in the past is not allowed.
constraint forall (p in Product where p > 1) (taskStarts[p, nibManufacturing] > 0);

% Every other task can start after the previous task ends.

Interviewer, Mon Aug 12 2024 constraint forall (p in Product) (taskEnds[p, materialPrep] == taskStarts[p, nibFabricatior

' constraint forall (p in Product) (taskeEnds[p, nibFabrication] == taskStarts[p, barrelFabric

Nt—F - constraint forall (p in Product) (taskEnds[p, barrelFabrication] == taskStarts[p, capFabric

Okay, we now know enough to get started on a MiniZinc solution. In the constraint forall (p in Product) (taskEnds[p, capFabrication] == taskStarts[p, inkConverte:

. . & . constraint forall (p in Product) (taskEnds[p, inkConverterFabrication] == taskStarts[p, ass

code pane (upper ”ght of the app) we created aSImp“StIC SChEdu“ng constra::.nt forall (p j.n Product) (taskEnds[p, assembly] == taskStarts[p, qualityContrc_Jl]);

system.It only illustrates the idea of running one jOb through each of the constraint forall (p in Product) (taskEnds[p, qualityControl] == taskStarts[p, packaging]),
tasks you mentioned(excepting any tasks that weren't part of making the % A task ends taskbDuration time units after it starts.

constraint forall (p in Product, t in Task) (taskEnds[p, t] == taskStarts[p, t] + taskDurat

product, those we'll deal with later.
% Minimize time elapsed when the final task ends (maxspan).
solve minimize max (p in Product) (taskEnds[p, packaging]);
Interviewer, Mon Aug 12 2024

Earlier, you listed the process steps typically used in making product (e.g.
1. Material Preparation, 2. Nib Fabrication, etc.) and for each you specified
typical durations.Now we'd like you to tell us what raw materials and

¢

Type message here....

11

schedulingTBD

Interviewer, Mon Aug 12 2024

Process L . . .
| suppose processing times for each of the steps you just mentioned might
vary from product to product. But generally speaking, how long does each
Resources L :
step take? Please produce a list just like the one you did for process steps,
- one process per line, but append to each line the typical processing time in
ata

parentheses.

® B < -

int nProducts = 1;
set of int: Product = 1..nProducts;

enum Task = {materialPrep, nibFabrication, barrelFabrication, capFabrication, inkConvertert
% Durations are in units of hours and may be rounded.
array [Product, Task] of float: taskDuration = [|2.000, 1.000, 1.5600, 1.000, 0.500, 2.000,

float : minTime = @;

The Routine
Formulate

with HMT

‘i ¥,

Interviewer, Mon 4

5 Scheduling

Okay, we now System

code pane (up

system.It only

» t1);

ymous with tasks.
Product ar' means it is a decision \

tid2) = s1 + dI <= 852 \/ 5§52

[

f
Human analysts

Models

ask) at the same time.

, taskStarts[k,t], taskDurat
w Waste P product can start now.
F9);

Manufacturing] > 0);

taskstarts[p, nibFabricatior
F= taskstarts[p, barrelFabric
] == taskStarts[p, capFabric
F= taskStarts[p, inkConvertei
jcation] == taskStarts[p, as:
Starts[p, qualityControl]);
F= taskStarts[p, packaging]),

tasks you mentioned(excepting any tasks that weren't part of making the
product, those we'll deal with later.

Interviewer, Mon Aug 12 2024

Earlier, you listed the process steps typically used in making product (e.g.
1. Material Preparation, 2. Nib Fabrication, etc.) and for each you specified
typical durations.Now we'd like you to tell us what raw materials and

% A task ends taskDuration time units after it starts.

constraint forall (p in Product, t in Task) (taskEnds[p, t] == taskStarts[p, t] + taskDurat

% Minimize time elapsed when the final task ends (maxspan).
solve minimize max (p in Product) (taskEnds[p, packaging]);

¢

Type message here....

12

Factoring the problem

of creating a scheduling system

i) Saimn 2y

The Routine P1 Pz P3

%@ Progg%ion SchBeg‘%Iing
; - Teaming %
 Imagine 3 personae working together: :°:

P1 knows the company's production processes well.

P2 knows a technical/scholarly body of knowledge (BoK)
useful to helping P1 with a task.

[]
@ : human
: : machine

P3 knows how to express the BoK in some technology.

13

schedulingTBD

Process

Resources

Data

Interviewer, Mon Aug 12 2024

| suppose processing times for each of the steps you just mentioned might
vary from product to product. But generally speaking, how long does each
step take? Please produce a list just like the one you did for process steps,
one process per line, but append to each line the typical processing time in
parentheses.

Surrogate Expert

. Material Preparation (2 hours)

. Nib Fabrication (1 hour)

. Barrel Fabrication (1.5 hours)

. Cap Fabrication (1 hour)

. Ink Converter Fabrication (0.5 hours)
. Assembly (2 hours)

. Quality Control (1 hour)

. Packaging (0.5 hours)

© 00 N O O b~ W N

. Shipping (1 hour)

Interviewer, Mon Aug 12 2024

Okay, we now know enough to get started on a MiniZinc solution. In the
code pane (upper right of the app) we created a simplistic scheduling
system.It only illustrates the idea of running one job through each of the
tasks you mentioned(excepting any tasks that weren't part of making the
product, those we'll deal with later.

Interviewer, Mon Aug 12 2024

Earlier, you listed the process steps typically used in making product (e.g.
1. Material Preparation, 2. Nib Fabrication, etc.) and for each you specified
typical durations.Now we'd like you to tell us what raw materials and

® B ¢« -

int : nProducts = 1;

set of int: Product = 1..nProducts;

enum Task = {materialPrep, nibFabrication, barrelFabrication, capFabrication, inkConvertert
% Durations are in units of hours and may be rounded.

array [Product, Task] of float: taskbDuration = [|2.000, 1.000, 1.500, 1.000, 0.500, 2.000,

float : minTime = 0;
% It shouldn't take longer than doing only one thing at a time.
float : maxTime = sum (p in Product, t in Task) (taskDuration[p, t]);

% We assume a task uses one major resource; resources are syhonymous with tasks.
array [Product, Task] of var minTime..maxTime: taskStarts; % 'var' means it is a decision \
array [Product, Task] of var minTime..maxTime: taskEnds;

% This is used in the constraint below.
predicate no_overlap(var float:si, float:di, var float:s2, float:d2) = s1 + di1 <= s2 \/ s2

% Ensure that no two Products aren't using the same resource (task) at the same time.
constraint forall (t in Task)
(forall (i,k in Product where i < k)
(no_overlap (taskStarts[i,t], taskDuration[i,t], taskStarts[k,t], taskDuratf

% We assume no tasks are running now, so the first task of some product can start now.
constraint exists (p in Product) (taskStarts[p, materialPrep] = 0);

% Starting some time in the past is not allowed.
constraint forall (p in Product where p > 1) (taskStarts[p, nibManufacturing] > 0);

% Every other task can start after the previous task ends.

constraint forall (p in Product) (taskEnds[p, materialPrep] == taskStarts[p, nibFabricatior
constraint forall (p in Product) (taskEnds[p, nibFabrication] == taskStarts[p, barrelFabric
constraint forall (p in Product) (taskEnds[p, barrelFabrication] == taskStarts[p, capFabric
constraint forall (p in Product) (taskEnds[p, capFabrication] == taskStarts[p, inkConverte:
constraint forall (p in Product) (taskEnds[p, inkConverterFabrication] == taskStarts[p, as¢
constraint forall (p in Product) (taskEnds[p, assembly] == taskStarts[p, qualityControl]);
constraint forall (p in Product) (taskEnds[p, qualityControl] == taskStarts[p, packaging]),

% A task ends taskDuration time units after it starts.
constraint forall (p in Product, t in Task) (taskEnds[p, t] == taskStarts[p, t] + taskDurat

% Minimize time elapsed when the final task ends (maxspan).
solve minimize max (p in Product) (taskEnds[p, packaging]);

- M : Production process body of knowledge
: Scheduling body of knowledge

. Software tools body of knowledge

14

Outline

1) Scope

2) Teaming example — schedulingTBD
3) Design for trustworthy teaming
4) Summary and future plans

15

Outline

1) Scope
2) Teaming example - schedulingTBD
3) Design for trustworthy teaming

* The interview follows an expert’s plan.
* Use a DSL.

* Use hidden conversations.

* Use intermediate models.

* Test with surrogate users.

4) Summary and future plans

16

Interviewers are Experts at Something nNisT

a -
- .
Production Scheduling schedulingTBD

BoK

% Interviewer, Mon Aug 12 2C
Process _
@ Teamlng | suppose processing t

|"} PESEITEES vary from product to pr
o 4 step take? Please proc
: one process per line, b
Data
parentheses.
Technology
BoK DSL

: human
: machine

17

The Interview IS a

Dynamic Planning Problem

* Currently using traditional hierarchical task network (HTN) planner.

* Planning domain encodes expert knowledge.
* What question to ask next

* Dynamic (on-line) planning
* One (Chain-of-Thought) agent type for each Q/A pair.
* Result of Q/A analysis is facts influencing later planning.

* Idea for future: RAG-based orchestration agent might be more robust.

18

Elements of HTN Planning Domain NIST

method/ characterize-process 7p) ; Top-level goal.
method/ [{:method/ proj-id ?7p ; Needs only a project-id to run.
method/ describe-challenge 7p : Methods run sequentially.
classify-production-type 7p
analyze-process ?7p
verify-process ?p).}1}

method/ describe-challenge ?p)
method/ [{:method/ proj-id 7p
method/ ldescribe-challenge 7p : Call to an operator.
remark-raw-material-challenge? ?p)!}]} ; Call to a method.

method/ (remark-raw- materlal challenge? 7p)
method/ [{:method/ cited"
method/ cites-raw-material-challenge ?p
method/ 'remark-raw-material-challenge p) 1}
:method/ not-cited
method/ not (cites-raw-material-challenge 7p)
method/ ldo-nothing) |}]}

operator/ (!describe-challenge 7p)} ; Plan leaves are operators, first Q/A pair.
operator/ lremark-raw-material-challenge ?p)}

Outline

1) Scope
2) Teaming example - schedulingTBD
3) Design for trustworthy teaming

* The interview follows an expert’s plan.
* Use a DSL.
* Use hidden conversations.
* Use intermediate models.
* Test with surrogate users.

4) Summary and future plans

20

Why use a domain-specific language? Nisr

* Constructionist learning (learn by making) ‘ :
¢ DSLs are Proguction Scheduling
¢ small languages Teaming %
¢ application-focused .
¢ ideally declarative (about what not now) e
* In mentoring, use the DSL
¢ to anchor concepts
¢ as an on-ramp to a community of practice. :
& : human
2 : machine

Peter Denno, Cognitive Work in Future Manufacturing Systems: Human-centered Al for Joint Work with Models, Journal of Integrated Design & Process Science, 2023 21

Outline

1) Scope
2) Teaming example - schedulingTBD
3) Design for trustworthy teaming

* The interview follows an expert’s plan.
* Use a DSL.

* Use hidden conversations.
* Use intermediate models.
* Test with surrogate users.

4) Summary and future plans

22

. Human Al i?therviewer
Interviewee Oor numan 7 H . " .
idden” conversations
“What is your scheduling challenge?”
Al surrogate Al interviewer Al models
< expert Interviewee of surrogate manager
“We make X..” 5, You.are an expert at making X,
“Make a model of this."
ana'l've” Q/A >
ISCUSSION, w =
about maklng X Make a model of that. ~
) N] Operations < Vecharism T operations DI
> :
“Here is a MiniZinc model of the
problem”
<€
“Is this [what human said]
consistent with our models?” S
“No. Ask for clarification.”
<€
< [clarifying question] - i Production process body of knowledge

N
e\ Scheduling body of knowledge

y
x Software tools body of knowledge

Hidden Conversations: Motivation

* Manufacturing spans a diverse body of knowledge.

* Make an LLM-based agent play the role of expert.

a
Production

Collect default knowledge through this parallel conversation. °

Use the default knowledge to eliminate excessive questions.

Interviewer, Mon Aug 12 2024

A FLOW-SHOP is a production system designed so that all
jobs follows the same sequence of steps through production
resources. A JOB-SHOP is a production system where each
job might follow its own route, depending on its unigue
requirements. Is the process you described more like a flow-
shop or a job-shop? Respond respectively with either the
single term FLOW-SHOP or JOB-SHOP.

Surrogate Expert
FLOW-SHOP

24

Outline

1) Scope
2) Teaming example - schedulingTBD
3) Design for trustworthy teaming

* The interview follows an expert’s plan.
* Use a DSL.

* Use hidden conversations.
* Use intermediate models.
* Test with surrogate users.

4) Summary and future plans

25

Intermediate Models:

The Problem Being Addressed

* Conventional SE V&V benefits from methods that are previewable.

— Previewable = Possible to dissect and inspect the method before use.

* LLM-based agents (e.g. assistants) easily delegated to tasks.
— But delegation is the antithesis of previewability.

— Explainable Al (XAl) explains w.r.t algorithms and training data, not a
belief about the rationality of the delegated agent.

* Consequently, a shortcoming in V&V.

26

Intermediate Models:

A Way Forward?

* Apply Chain-of-Thought (CoT) reasoning on unstructured text from conversation,
transforming and refining information to graphs and hypergraphs.

— CoT isn’t quite previewable, but it is close.

* Progressively transform what is learned in conversation to graphical forms viewable
(and possibly executable) by humans for V&V.

- BPMN
- SysML

- Modelica

27

Intermediate Models:

Text to Knowledge Graph by Chain-of-Thought Transformation

You are a helpful assistant. You read user data and output an interpretation of it as a vector
of Clojure maps conforming to requirements expressed below. The requirements are enacted in
phases named ’‘revisions’, (REV-1, REV-2..., REV-5). We will ask for interpretation to revision
REV-i data using input that is in the form of REV-i-1 output. This allows us to check your work
at each revision before proceeding to the next. We may ask for the same revision twice
consecutively; this is especially true if the first answer you provided did not meet
specifications. The data we are working with typically concerns manufacturing processes. Here
is example input to REV-1l, which is the only input that is not a vector of Clojure maps:

Raw Material Acquisition - 1 day to 3 months
Material Preparation - 2 days

Component Machining - 5 days

Assembly - 3 days

Quality Control (QC) - 1 hour (but could go longer)
Packaging - 1 day

Shipping - Varies depending on where it is going

oy U W N

In REV-1 you separate each line of text into three parts: process step, process name, and
duration; you create a Clojure map of this information. The keys you should use in the map
are respectively :PROCESS-STEP :PROCESS and :DURATION (upper-case Clojure keys). Specifically,
the value of map key :PROCESS-STEP is the number starting the string. The value of map key

:PROCESS is a string describing the process step.

The value of map key :DURATION is a string

of the remaining information in the line,

typically describing the duration:

:PROCESS-STEP

:SUPPLY-CHAIN? true,

:PROCESS "Raw Material Acquisition"
:DURATION {:QUANTITY-LOW

{ :AMOUNT-STRING "1" :UNITS :days}
:QUANTITY-HIGH {:AMOUNT-STRING "3" :UNITS :months}},
:VAR "getRawMaterial"},

:VAR "machining"},

NST

{ :PROCESS-STEP 4 :PROCESS "Assembly" :DURATION {:AMOUNT-STRING "3" :UNITS :days},
:VAR "assembly"},
:PROCESS "Quality Control (QC)" :DURATION {:AMOUNT-STRING "1" :UNITS :hours}

:COMMENT " (but could go longer)", :VAR "qualityCtrl"},

The REV-1 output that you should produce from the REV-1 input above is: { :PROCESS-STEP 5

[{:PROCESS-STEP :PROCESS "Raw Material Acquisition" :DURATION "1 day to 3 months"}, { :PROCESS—-STEP 6 :PROCESS "Packaging" :DURATION {:AMOUNT-STRING "1" :UNITS :days},
:PROCESS—-STEP :PROCESS "Material Preparation" :DURATION "2 days"}, :VAR "packaging"},
:PROCESS-STEP :PROCESS "Component Machining" :DURATION "5 days"}, { :PROCESS—-STEP 7 :PROCESS "Shipping" :DURATION "varies"

:PROCESS-STEP
:PROCESS-STEP
:PROCESS-STEP
:PROCESS-STEP

:PROCESS "Assembly" :DURATION "3 days"},

:PROCESS "Quality Control (QC)" :DURATION "1 hour (but could go longer)"},
:PROCESS "Packaging" :DURATION "1 hour"},

:PROCESS "Shipping" :DURATION "Varies depending on where it is going"}]

:COMMENT "Varies depending on where it is going", :SUPPLY-CHAIN? true,

:VAR "shipping"}]

N o s W

REV-2, REV-3, and REV-4 are not shown. |Respectively, they isolate commentary, interpret the
duration strings, and flag processes that concern supply chain, rather than work done
in-house. The results of these transformations are shown in REV-5 results.

In REV-5, we add a camelCase string suitable for use as a program variable that describe the
:PROCESS. The variable should be concise, no more than 15 characters long or so and should
start with a lowercase letter, a-z. In the map, we use the keyword :VAR to identify this
camelCase string.|Suitable output for REV-5 is shown below:

See https://github.com/pdenno/schedulingTBD/blob/main/data/instructions/process-dur-agent.txt 28

Interrelating Conversation

(a goal currently unrealized)

Operations ‘ Mechanism D Operations D NL

acyltaldehyde
pyurvate \ ethanol

pyurvate lactate

water glucose \
glucose — beer beer
wort
CO2

wort \ glucose

malt

Lobski & Zanasi, String Diagrams for Layered Explanation, 2024. 29

. Human Al i?therviewer
Interviewee Oor numan 7 H . " .
idden” conversations
“What is your scheduling challenge?”
Al surrogate Al interviewer Al models
< expert Interviewee of surrogate manager
“We make X..” 5, You.are an expert at making X,
“Make a model of this."
ana'l've” Q/A >
ISCUSSION, w =
about maklng X Make a model of that. ~
) N] Operations < Vecharism T operations DI
> :
“Here is a MiniZinc model of the
problem”
<€
“Is this [what human said]
consistent with our models?” S
“No. Ask for clarification.”
<€
< [clarifying question] - i Production process body of knowledge

N
e\ Scheduling body of knowledge

y
x Software tools body of knowledge

Outline

1) Scope
2) Teaming example - schedulingTBD
3) Design for trustworthy teaming

* The interview follows an expert’s plan.
* Use a DSL.

* Use hidden conversations.
* Use intermediate models.
* Test with surrogate users.

4) Summary and future plans

31

Testing: Science Channel’'s How It's Made NIST

* Where do you find enough experts?

 Canadian documentary series showing
how every-day items are manufactured

1600 episode segments
* We're using them as test cases (i.e. the $Xs).

"You manage a company that makes $X. You are an expert in production and manage your

company’s supply chains. You help me by answering questions that will allow us to collaborate
in building a scheduling systems for your company. Your answers typically are short, just a
few sentences each. If you don’t have information to answer my questions, you provide a

plausible answer nonetheless."

32

Example Surrogate Run

schedulingTBD

Mon Jul 29 2024
Process B ® B ¢« -

Interviewer, Mon Jul 29 2024

int : nProducts = 1;

i ianifi i i set of int: Product = 1..nProducts;
Resources Describe your most significant scheduling problem in a few enum Task = {batching, melting, flt'Jating, annealing, qualityCheck, cutFinish};
sentences. % Durations are in units of hours and may be rounded.

array [Product, Task] of int: taskDuration = [|2, 8, 3, 5, 2, 3|];
Data int : minTime = O;

% It shouldn't take longer than doing only one thing at a time.
int : maxTime = sum (p in Product, t in Task) (taskDuration[p, t]);

% We assume a task uses one major resource; resources are synonymous with tasks.
array [Product, Task] of var minTime..maxTime: taskStarts; % 'var' means it is a decision variable.
array [Product, Task] of wvar minTime..maxTime: taskgnds;

% This is used in the constraint below.
predicate no_overlap(var int:sl1, int:d1, var int:s2, int:d2) = s1 + d1 <= s2 \/ s2 + d2 <= s1;

% Ensure that no two Products aren't using the same resource (task) at the same time.
constraint forall (t in Task)
(forall (i,k in Product where i < k)
(no_overlap (taskStarts[i,t], taskDuration[i,t], taskStarts[k,t], taskDuration[k,t])}));

% We assume no tasks are running now, so the first task of some product can start now.
constraint exists (p in Product) (taskStarts[p, batching] = 0);

% Starting some time in the past is not allowed.
constraint forall (p in Product where p > 1) (taskStarts[p, nibManufacturing] > 0);

% Every other task can start after the previous task ends.

; constraint forall (p in Product) (taskEnds[p, batching] == taskStarts[p, melting]);
Interviewer, Mon Jul 29 2024 constraint forall (p in Product) (taskEnds[p, melting] == taskStarts[p, floating]);
constraint forall (p in Product) (taskEnds[p, floating] == taskStarts[p, annealing]);
. i constraint forall (p in Product) (taskEnds[p, annealing] == taskStarts[p, qualityCheck]);
Great, we'll call your project SUR Plate Glass. constraint forall (p in Product) (taskEnds[pi qualityCheck] == taskstartis[p, cutFinish])E

: % A task ends taskDuration time units after it starts.
Interviewer, Mon Jul 29 2024 constraint forall (p in Product, t in Task) (taskEnds[p, t] == taskStarts[p, t] + taskDuration[p, t]);
Though you've cited a challenge with inputs (raw material, % Minimize time elapsed when the final task ends (maxspan).
solve minimize max (p in Product) (taskeEnds[p, cutFinish]),

Type message here....

33

Outline

1) Scope
2) Teaming example — schedulingTBD
3) Design for trustworthy teaming

4) Summary and future plans

34

Summary Design Recommendations NST

* Captures expert knowledge In the interview plan

* Use agents prevasively.
¢+ The new way to factor a problem
¢+ RAG for agent-based conversation planner?

* Use a well-conceived DSL

* V&V by Chain-of-thought analysis to intermediate models
¢ Background surrogate conversation for

* Factor conversation into areas / personae.
¢ For example, process, resources, data

35

What comes next

* Complete exploratory software for human use
* Wayne State testing with students
* Demonstrate effectiveness of intermediate analytical work products

* ISO/IEC JTC1]/ SC42 (Al) WG 4 (Use cases)
* Contributing to New Work Item 42109 "Human/Machine Teaming*
* Meeting at NIST with WG4 convener and editors (Japan delegation)

* A pilot for adaptive integration of digital twins

36

	Presentation Title
	Outline: Scope
	Teaming is working together
	Manufacturing Long Ago
	Slide 5
	Research question
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Teaming on cognitive tasks_clipboard0
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Mapping conversation to mechanistic explanation
	Slide 30
	Slide 31
	Science Channel’s How It’s Made
	Slide 33
	Slide 34
	Outline (3)
	What comes next

