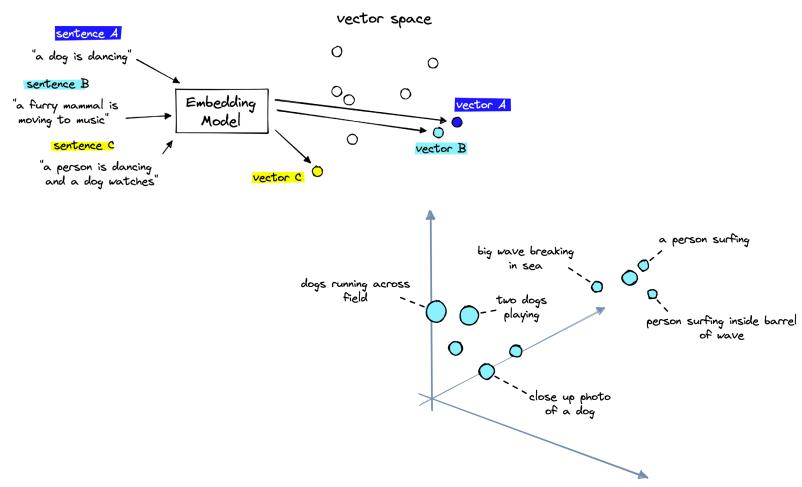


Research and Application Workshop

AI4SE & SE4AI

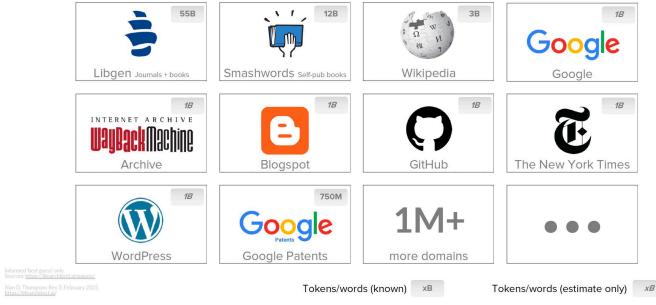
The Use of Large Language Models/"Generative"

Systems in Secure and Restricted Settings

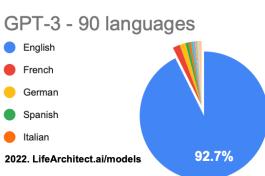

Carlo Lipizzi – clipizzi@stevens.edu

September 2023

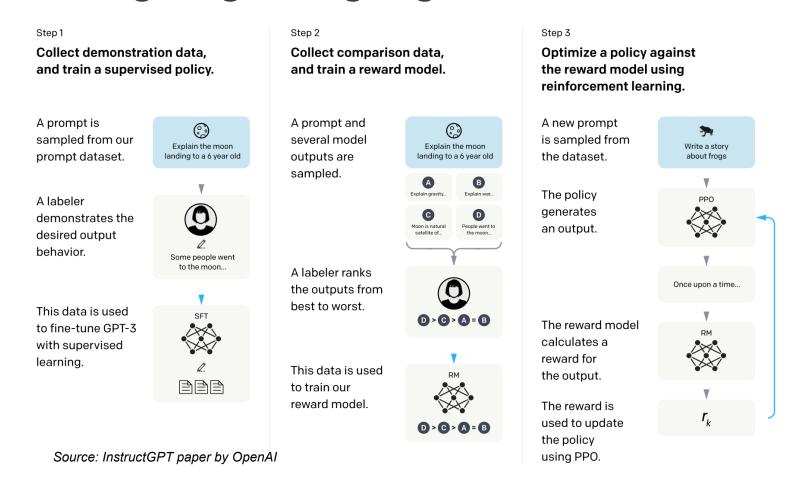
What is in an LLM


- LLMs are probability-driven pattern matchers with a conversational layer
- They do not "understand" the text
- Bias issue, in terms of data, human reviewers and possibly algorithms
- No traceability of the sources
- High inefficiency. Being based on a "brute force" approach, they perform much worst than human brain, that is using a fraction of the energy to perform much more complex tasks
- Leading LLMs like ChatGPT have limited/no domain-specific knowledge
- High cost of training

The concept of "proximity" in LLMs



What is in the training data for LLMs


GPT-3'S TOP 10 DATASETS (BY DOMAIN/SOURCE)

- The total size of the training dataset is estimated in 45TB of text
- Being a data-driven model, there is an intrinsic bias, induced by the data used for the training

Training Large Language Models

• The estimated cost to train ChatGPT is **\$4.6 million** with an estimated energy usage of **936 MWh**. This amount of energy is enough to power 30,632 American households for a day, or 97,396 average European households for a day

Bias in LLMs

- There are 3 different types of biases in a Large Language Model:
 - Data: The system is based on data. A biased dataset will cause biased results
 - Data Labeling: Humans are labeling the data, and their choices will influence the behavior of the system
 - Model: The algorithm used to encode the dataset is using a logic that may or may not be applicable to all the cases
- While this may not be a vital issue for many industries, it is critical for all the industries operating in restricted settings, such as Defense, Healthcare, Finance
- Besides a generic bias, there is the issue related to the low domain specialization of the generic Large Language Models, such as ChatGPT

Bias in LLMs - Remediations

- The first step when introducing an LLM into a production, the bias of the system should be evaluated. We are developing a method to measure at different stages generic and specific biases
- Once a measurement of the specific bias is determined, a specific remediation could be implemented. For example, by providing a proper dataset or performing a more controlled labeling
- One of the obvious options to reduce bias is to build your own LLM, assuming there is availability of the proper resources

Building your own LLM: Existing examples

Use Cases	Open-Source Models	Closed Models
Finance	FinGPT (Yang et al., 2023)	BloombergGPT (Wu et al., 2023)
Medicine	BioMedLM (Bolton et al., 2023), BioGPT (Luo et al., 2022), GatorTron (Yang, et al., 2023)	BioGPT-JSL (John Snow Labs, 2023)
Code	CodeBERT (Feng et al., 2020)	Codex (Chen et al., 2021)
Annotation		AnnoLLM (He et al., 2023)
Robotics	PROGPROMPT (Singh et al., 2023)	
Science	Galatica (Taylor et al., 2022) (shut down due to biased output)	

Building your own LLM: SSE_GPT project

- In June '23 I started a self funded summer project to develop a "SSE_GPT" prototype using data from one
 of my courses
- Final goal is to create an automatic tutor for SSE students
- The course I picked runs in multiple section each year, being one of the most popular at SSE, with about 150 students/year
- There is a relatively large amount of data on this course, coming from transcripts and teaching material.
 Transcripts cover about 10 full semester
- Another valuable source of data is the collection of emails from/to students with questions (from the students) and answers (from the instructor and/or the TA). This dataset has been used as a stage 1 in the finding answers
- The team is composed by 2 of my PhD students Shiyu Yuan and Balaji Rao 2 Masters students (Kunal Pradeep Gandhi and Naveen Mathews Renji) a Postgraduate (Amineh Zadbood) and myself
- There are also 3 high school students working on different aspects of the use of LLMs, that could be integrated down the road with the main project
- The prototype is working, but still with a lot of errors. We are continuing the developments, expecting a stable prototype by the end of year. Results will likely be far less sensational as in leading LLMs, due to the limited resource we have, compared to industry