

Digital Engineering Measurement Framework

WRT-1001 Digital Engineering Measures

Tom McDermott, Alejandro Salado, Eileen Van Aken, Kaitlin Henderson

Sponsor: Phil Zimmerman OUSD/RE

ANNUAL RESEARCH REVIEW 2022

Digital Engineering Measurement Framework - Project Overview and Timeline

<u>2020</u>

AIA EMC Project Plan

- Refined list of DE metrics serving as Key Performance Indicators for program execution, and model health
- Detailed descriptions of each metric, traceable to SE metrics, quality, & requirements volatility

Established collaborative WG (9/14/20) (PSM, NDIA, INCOSE, AIA, SERC, Aerospace, OUSD R&E, ...)

Objectives

- Define industry consensus measurement framework for DE, MBSE
- Align measures with business information needs for project execution and organizational performance improvement.

Leverage partner resources and assets

- Practical Software and Systems Measurement (PSM)
 <u>Continuous Iterative Development Measurement Framework</u>
- <u>SERC / INCOSE / NDIA MBSE Maturity Survey</u>
- SERC DE metrics research (<u>SERC-2020-SR-003</u>, <u>SERC-2020-TR-002</u>)
- Systems Engineering Leading Indicators Guide
- <u>DoD Digital Engineering Strategy</u>

2021

Follow PSM process to define DE measurement framework

 Aligned with ISO/IEC/IEEE 15939 measurement process standard

Team product development

- Front matter (concepts, terms, ...)
- Information Needs (ICM Table)
- Measurement specifications

2022

Initial framework draft for review (Jan 2022) V1.0 Publication release (May 2022)

Initial Measurement Specifications

- Architecture Completeness and Volatility
- Model Traceability
- Product Size
- DE Anomalies
- Adaptability and Rework
- Product Automation
- Deployment Lead Time
- Runtime Performance

http://www.psmsc.com/DEMeasurement.asp

Lack of effective DE/MBSE measures has been an inhibitor to digital transformation Substantiated by DoD SERC research

Benchmarking the Benefits and Current Maturity of Model-Based Systems Engineering across the Enterprise (SERC-2020-SR-001)

Category	Question title	SERC MBSE Questionnaire	Survey	SA	A	D	SD	Chart	Calculat
*	т.	· · · · · · · · · · · · · · · · · · ·	Scol 🔨	-	Ψ.	-	*	Ψ.	ed Scc 🍸
	11. Modeling provides								
	measurable	Modeling activities in our organization provide							
Model Metrics	improvements	measurable improvements within and across projects.	30	18	83	50	19		30
12. Have consistent		We have consistent metrics across our							
	metrics across	program(s)/enterprise that include our modeling							
	enterprise	activities.	-153	8	33	90	40		-153

https://sercuarc.org/results-of-the-serc-incose-ndia-mbse-maturity-survey-are-in/

Summary Report Task Order WRT-1001: Digital Engineering Metrics Supporting Technical Report (<u>SERC-2020-SR-003</u>)

Task Order WRT-1001: Digital Engineering Metrics Technical Report (SERC-2020-TR-002)

INCOSE Model-Based Capabilities Matrix

- Released January 2020 by INCOSE
- Framework for assessing organizational maturity

Model-Based								
Capability Stages	Stage 0	Stage I	Stage 2	Stage 3	Stage 4			
Tools & IT Infrastru	Fools & IT Infrastructure							
Collaboration	E-mail, telecom.	System Model File Exchange.	Various organizations working on different parts of model. Full model integrated by a single organizations.	Partial On-line, real-time collaboration amongst distributed teams	On-line, real-time collaboration amongst distributed teams			
Disparate Database/Tool interoperability	None	Tool-to-Tool, ad hoc interoperability	Partial Federated Database Management System (FDBMS)	Main tools interoperable. Supporting tools interact through file transfer.	Fully Federated w/ standard "plug-and-play" interfaces. Data is interchanged among tools			
	Databases/too	Inter- Database/Tool Data Item	Inter-Database/Tool Data	Inter-Database/Tool Data Item associations among all data items defined,	Inter-Database/Tool Data Item associations among all data items defined, captured, managed, and traceable where changes in one data source			
Data Item Associations	ls are independent	associations defined	captured, managed	captured, managed, and traceable	alerts owners of other data sources of intended updates			
User IF, Viewpoint/Views	N/A	Doc Gen	UI draws from Model app	UI draws from multiple models/DBs	UI supports Interrogation; multiple configs			

SYSTEMS ENGINEERING RESEARCH CENTER

Download the Results

ABOUT SERC PEOPLE RESEARCH EDUCATION LIBRARY NEWS AND EVENTS

RESULTS OF THE SERC | INCOSE | NDIA MBSE MATURITY SURVEY ARE IN June 10, 2020

https://sercuarc.org/results-of-theserc-incose-ndia-mbse-maturitysurvey-are-in/

June 8, 2020 – Summary Report Task Order WRT-1001: Digital Engineering Metrics Supporting Technical Report SERC-2020-SR-003 View the DE Metrics Summary Report (June 8, 2020)

March 19, 2020 — Benchmarking the Benefits and Current Maturity of Model-Based Systems Engineering across the Enterprise Results of the MBSE Maturity Survey / Part 1: Executive Summary

View the SERC-2020-SR-001 report on the results of the MBSE Maturity Survey

June 8, 2020 – Task Order WRT-1001: Digital Engineering Metrics Technical Report SERC-2020-TR-002 View the Digital Engineering Metrics Full Technical Report

MBSE Survey Overview

Topics	Summary of Survey Questions	Topics	Summary of Survey Questions			
I. MBSE Usage	 MBSE strategy documented at enterprise level MBSE processes & tools integrated, inform enterprise staff Q: Primary value of cross-functional MBSE integration? 	7. Model Sharing and Reuse	 19. Teams establish, share, reuse org model libraries 20. Org interface around models for stakeholder use 21. Shared models used to consistently manage programs across lifecycle 22. Q: org implementation for data/model discovery, reuse? 23. Modeling environment security 24. Modeling environment protects IP 25. Cross-discipline processes for tools, data 			
2. Model Manage-	4. Taxonomy for modeling across organization 5. Well-defined processes/tools for model management.					
ment	6. Standard org guidance for model management/tools7. Q: Business value from consistent model management?	8. Modeling Environments				
3. Technical	 Modeling basis for enterprise org processes MBSE process support for technical reviews 		interoperability 26. Q: value from collaborating on models across disciplines			
Manage- ment 10. Q: Value of MBSE (or digital engrg) in technical reviews?		9. Organizationa	27. Q: most challenging org obstacles for MBSE?28. Q: Best organizational enablers for MBSE?			
4. Metrics	 I 1. Modeling provides measurable improvement across projects 12. Consistent metrics across programs/enterprise? 	l Implementati on	29. Q: Biggest changes our org needs for MBSE?			
	13. Q: Most useful metrics?	10.	30. Organization defined critical roles to support MBSE			
5. Model Quality	IelI 4. Defined processes/tools for V&V of modelsyI 5. Defined processes/tools for data/model quality		31. Q: Top MBSE roles in your organization? 32. Org staffing adequate to fill MBSE-related roles?			
6. Data	 16. Org approach for data interface between tools 17. Data managed independent of tools for portability 	II. MBSE Skills	33. Defined critical skills for MBSE34. Q: The most critical skills for MBSE?			
ment	18. Q: Data management roles/processes?	12. Demographics	Organizational size, domain, MBSE experience			

Survey content is derived from the draft INCOSE Digital Engineering Capabilities Definition

Overall Survey Scores

DE Metrics Survey Result

Modeling activities in our organization provide measurable improvements within and across projects.

100

90

80

70

60

50

40

30

20

12. Have consistent metrics across enterprise 11. Modeling provides measurable improvements

Literature Review Results

- Searched papers that mention a benefit of MBSE and what the source of that benefit was: measured gains, observed gains, perceived gains (no source for benefit), reference.
 - > Total Papers that mention MBSE: 847
 - Papers that mention benefits: 360
 - Measured gains: 2
 - o Observed gains: 27
 - Perceived gains: 236
 - Reference: 114
 - o Misc.: 2

*Kaitlin Henderson (VT) PhD studies

Top Cited DE Benefits Areas from Literature and Survey Results

Top-cited Adoption Metrics Obstacles vs. Enablers vs. Changes

Summary: Top DE Metrics Areas

(>10 citations)

Category	Most Cited Benefits	Survey	Lit Review
	Reduce Cost	5.5%	5.5%
	Reduce Defects/Errors/Rework	4.2%	1.3%
Quality	Increased Traceability	3.7%	8.4%
	Higher Level of Support for Integration	3.1%	1.2%
	Improved System Quality	3.1%	4.6%
	Improved Consistency	7.5%	6.0%
	Reduce Time	6.8%	4.8%
Velocity/Agility	Improved Capacity for Reuse	6.6%	5.5%
	Increased Efficiency	4.4%	1.8%
	Improved Collaboration	2.9%	0.8%
Llaar Experience	Improved System Understanding	6.4%	3.7%
User Experience	Better Manage Complexity	2.0%	5.6%
Knowladza Transfor	Better Accessibility of Information	6.4%	3.6%
Knowledge Transfer	Better Communication/ Information Sharing	6.4%	10.9%
	Methods/Processes	8.0%	*
	Roles/Skills, People Willing to Use	6.8%	*
Adoption	Leadership support/Commitment	5.5%	*
	Training/Tools, People Willing to Use	4.4%	*
	Change Management Process Design	3.1%	*

Causal Analysis for Measurement Model

- Causal Analysis of benefits and adoption data
- Link primary benefits to measures
- Used to scope detailed measurement specifications

Develop Causal Links

 Starting nodes for causal map: benefits that can be directly influenced by improving MBSE capabilities/ features

Direct Benefits	Definition
Higher level support for	Use of tools and methods that automate previously manual tasks and
automation	decisions
Early V&V	Moving tasks into earlier development phases that would have
	required enort in later phases
Reusability	Reusing existing data, models, and knowledge in new development
Increased traceability	Formally linking requirements, design, test, etc. through models
Strengthened testing	Using data and models to increase test coverage in any phase
Better accessibility of	Increasing access to digital data and models to more people involved in
information (ASOT)	program decisions
Higher level support for	Using data and models to support both the integration of information
integration	and system integration tasks
Multiple viewpoints of	Presentation of data and models in the language and context of those
model	that need access

Rework

PSM measures are derived from business information needs

Based on objectives and issues from the project or enterprise levels

- *Objective* a project goal or requirement
- Issue an area of concern that could impact the achievement of an objective, including risks, problems, and lack of information

See Framework for more information

Measures should provide insight into project or enterprise information needs to support decision-making

PSM Practical Software and Systems Measurement, <u>www.psmsc.</u>com

DE Measurement Framework v1.0

Unclassified

Defects and Cycle Time

It is the goal of agile full systems engineering to continuously iterate and contain defects into earlier and earlier developmental phases

Example Measurement Information Model – Anomalies

Digital engineering measures and indicators are specified in a structured template aligned with the PSM Measurement Information Model

DE Measurement Framework v1.0

Example Measurement Specification (Excerpts)

MODEL TRACEABILITY 8.2

	Measure Introduction			100	1			
Description	Description	The usefulness and quality of a digital model depends on the completeness and integrity of the relationships among model elements. Traceability between elements, such as requirements allocation and flow down to architectural, design, and implementation components, assures that the system solution is complete and consistent. Gaps in bi-directional traceability between the artifacts of two models or might indicate where further analysis or refinement are needed. This might further apply to traceability gaps within a single model, system solutions is no implicit traceability between artifacts of different design stages. The prerequisites of any traceability measurement are agreed-upon, a priori guidelines and definitions, e.g., what model elements and relationships shall be traced, that apply to the specific DE model of the system. <i>Note:</i> While traceability might be applied to any model elements of interest that shall be defined a priori, functional architecture completeness always explicitly focuses on functions, requirements, and the associated hierarchy. Traceability reports and analyses might be facilitated by digital modeling tools. The traceability concepts and indicators in this specification are representative examples of more general traceability mappings and reports across the development life cycle, such as: • Traceability between stakeholder needs, system requirements, and allocated or derived requirements at each level of the system hierarchy • Traceability and flow down of requirements to the logical or physical solution domain (e.g., design, implementation, integration, verification, validation) • Allocation and traceability of performance measures or parameters, such as Measures of Effectiveness (MOEs) or Key Performance Parameters (KPPs)		rator(s) and Interpretation		Model Traceability can be depicted using visual or tabular summaries of the relationships among model elements. The specific indicators may depend on the model elements for which traceability is being measured, and the built-in reports and analyses provided by the digital modeling tool. For example, traceability among model elements might be implemented by showing requirements derivation and model traceability coverage of stakeholder needs into system and component requirements. Representative example indicators used to assess traceability dependencies among selectable model elements (e.g., requirements, use cases, activities, logical architecture and design, physical design, interfaces, parameters, measures of performance) are depicted in Figure 8.2-1. Here, mostly 2-dimensional matrices containing model specific model elements of interest are utilized. Alternatively, the relationship between model elements might be depicted as flow down. With respect to Figure 8.2-1 (bottom left), a specific use case is linked to related actions via an activity diagram.	Additional Analysis Guidance Implementatio Considerations Information Category	
Definitions	Relevant Terminology	Model Element Source Element Destination Element Traceability Gap	Modeling constructs used to capture the structure, behavior, and relationships among system model components (See 2.2.2 Model Element) The <i>a priori</i> base model elements defined per DE model from which other model elements shall be derived from or allocated to, e.g., a stakeholder needs. The model elements defined per DE model that shall be derived from or allocated to the Source Elements. One or more model elements defined per DE model that shall be traced, but that have not yet been derived or allocated to Source Elements. Note: For enhanced traceability concepts refer to the advanced topic discussion.	Indi	Indicator Description and Sample	Traceability Between Model Elements (Dependency Matrix) Projects and organizations shall define the objectives, constraints, and criteria for establishing traceability among applicable model elements. This is typically guided by a model schema, metamodel, or blueprint that constrains traceability to meet the model's purpose. Review and analyze traceability dependencies among model elements to assess the completeness, adequacy,	dditional Info	Concept Relevant Entities Attributes Data Collection Procedure Data Analysis
Derived)	Information Need	Information Need and Measure Description Information Need and Measure Description what is the extent of achieved traceability coverage from Source Elements, e.g., requirements, down to the logical or physical solution domain? What is our progress in completing the digital model? What traceability gaps exist? e Measure 1 Wodel Elements Traced [integer] Number of model elements in a 1 in n source/destination element relationship (s) as defined in an agreed upon, a priori guideline. e Measure 2 Nodel Elements not in any 1 in source/destination element relationship as defined in an agreed upon, a priori guideline. ived assure 1 Total Model Elements = Model Elements Traced + Model Elements Not Traced [integer] Total number of model elements Note: As defined in an agreed upon, a priori guideline (See Base Measure 1 and Base Measure 2).		Analysis	Analysis Model	 quarity, and integrity of the digital model. The analysis may vary according to the types of specific model elements selected, but general guidelines may include: Each source (parent) model element (Model Element 1) should be traceable to one or more allocated or derived destination (child) model element (Model Element 2). Each destination (child) model element (Model Element 2) should be derived from, or refine, a parent requirement or model element (Model Element 1). Determine if the set of linked dependencies are, in aggregate, sufficient to adequately implement the parent requirement or model element. 	٩	Procedure
es (Base,	Base Measure 1 Base Measure 2				Decision Criteria	In case a desired model traceability coverage (Derived Measure 2), e.g., 70%, of model elements of interest has not been met, the team shall specifically address these gaps. To validate whether the system meets stakeholder needs, at minimum, the system requirements should be traceable to these stakeholder needs. Model elements that do not satisfy requirements, might be obsolete and shall be evaluated. Again, the prerequisites of any decision making are agreed-upon, a priori guidelines and definitions, e.g., what model elements and relationships shall be traced, that apply to the specific DE model of the system		
Measur	Derived Measure 1							

Digital Engineering Measurement Framework – Example Indicators

Is the architecture complete to proceed with design?

What is the traceability and coverage of model elements?

Product Size (Model Elements)

Are we finding and removing anomalies earlier using DE?

Is product quality adequate to be used in subsequent phases?

Adaptability and Rework

How much rework is for planned and unplanned changes?

DE Measurement Framework v1.0

Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

20

Digital Engineering Measurement Framework – Example Indicators

What percentage of artifacts are automatically model-generated?

How long does it take to deploy an identified capability?

What is the likelihood performance will meet operational needs?

Excerpts only from DE measurement specifications. Some specs have multiple sample indicators. See framework Section 8 - Measurement Specifications for details.

21

PRACTICAL SOFTWARE AND SYSTEMS MEASUREMENT

Editors	Organization				
Joseph M. Bradley	Main Sail, LLC				
Cheryl Jones	US Army DEVCOM AC				
	Practical Software and Systems Measurement (PSM)				
Geoff Draper	L3Harris Technologies				
-	AIA Engineering Management Committee				
	NDIA Systems Engineering Division				
Tom McDermott	Systems Engineering Research Center (SERC)				
	Stevens Institute of Technology				
Paul Janusz	US Army DEVCOM AC				
	Practical Software and Systems Measurement (PSM)				
Authors	Organization				
Lennis Bearden	L3Harris Technologies				
Giacomo Gentile	Collins Aerospace				
Richard Halliger	Volkswagen Group				
Ray Madachy	Naval Postgraduate School				
Drew Miller	The Boeing Company				
Young Park	Collins Aerospace				
Bob Scheurer	The Boeing Company NDIA Systems Engineering Division				
200 000000	AIA Engineering Management Committee				
Core Team	Organization				
Kaitlin Henderson	Virginia Tech				
Al Hoheb	Aerospace Corporation				
Bill Luk	BAE Systems				
	AIA Engineering Management Committee				
Lisa Murphy	Siemens Digital Industries Software				
Jeff Nartatez	Office of the Undersecretary of Defense for Research and Engineering				
	(OUSD R&E) [SAIC]				
Garry Roedler	INCOSE				
	NDIA Systems Engineering Division				
Alejandro Salado	The University of Arizona				
Frank Salvatore	Office of the Undersecretary of Defense for Research and Engineering				
	(OUSD R&E) [SAIC]				
Paul Segura	The Boeing Company				
	AIA Engineering Management Committee				
Natasha Shevchenko	Software Engineering Institute, Carnegie Mellon University				
Marilee Wheaton	Aerospace Corporation				
	INCOSE				

Additional Contributors	Organization			
David Allsop	The Boeing Company			
Sanjay Angadi	Ansys			
	AIA Engineering Management Committee			
David Cooper	BAE Systems			
Mimi Davidson	Office of the Undersecretary of Defense for Research and			
	Engineering (OUSD R&E) [SAIC]			
John Dilger	BAE Systems			
Paul Embry	L3Harris Technologies			
	AIA Engineering Management Committee			
Ann Hodge	Sandia National Laboratories			
Mike McLendon	Retired			
Robert Minnichelli	Aerospace Corporation			
Gery Mras	Aerospace Industries Association (AIA)			
Rosco Newsome	Ernst & Young (EY)			
Bill Nichols	Software Engineering Institute, Carnegie Mellon University			
Ryan Noguchi	Aerospace Corporation			
Macaulay Osaisai	L3Harris Technologies			
Steven Quinn	BAE Systems			
Donna Rhodes	Massachusetts Institute of Technology (MIT)			
Chris Schreiber	Lockheed Martin Corporation			
	NDIA Systems Engineering Division			
Paul Solomon	Retired			
Brian Tenney	Lockheed Martin Corporation			
Sundar Thyagarajan	L3Harris Technologies			
Steven Turek	United States Air Force			
Timothy Walden	Lockheed Martin Corporation			
John Wood	Naval Information Warfare Command			

Much appreciation to the many individuals and organizations that supported development of the V1.0 Digital Engineering Measurement Framework!

- The Systems Engineering Leading Indicators Guide, published by INCOSE, identified a set of measures to assess the effectiveness of the systems engineering process. Despite the maturity of these indicators, few complete examples of actual measurement exist, primarily due to the lack of tools that can quantitatively track these measures.
- Important quantitative measures supporting selected leading indicators include:
 - Requirements Trends: Model Traceability, Functional Architecture Completeness & Volatility
 - System Definition Change Backlog Trends: Rework, Effort, Efficiency
 - Interface Trends: Model Traceability, Functional Architecture Completeness & Volatility
 - Requirements Verification & Validation Trends: Deployment Lead Time, Efficiency
 - Work Product Approval Trends: Number of Model Views/Artifacts, Deployment Lead Time
 - Review Action Closure Trends: Model Review Item Discrepancies
 - Defect & Error Trends: Defect Detection, Defect Resolution, Rework
 - Technical Measurement Trends: ASOT Frequency of Access
 - Architecture Trends: Functional Architecture Completeness and Volatility, Functional Correctness, Product Size
 - Cost & Schedule Pressure: Efficiency, Rework, Deployment Lead Time

Massachusetts Institute of Technology, INCOSE, and PSM, Systems Engineering Leading Indicators Guide, v. 2.0, International Council on Systems Engineering, 2010.

- very few developmental and sustainment programs that are implementing a formal measurement program, and fewer are publishing results
- U.S. Navy Submarine Warfare Federated Tactical Systems (SWFTS) program used for initial metrics framework validation
- SWFTS quantified these primary benefits: Increased Traceability, Early V&V and Strengthened Testing, Support for Integration, and Automation.

Rogers, E. and Mitchell, S., "Submarine Warfare Federated Tactical Systems (SWFTS) program," *Systems Engineering*, 2021: 1-24

Where do we go from here?

- **DE** measures for the enterprise
- Measure breadth of usability and user experience with digital tools
- Measure return on investment
- Measure additional productivity indicators related to velocity and agility
- Measure additional indicators that isolate new value to the enterprise through DE, in areas such as quality and knowledge transfer
- Measure enterprise and personnel process adoption
- Measure usability and user experience with digital tools
- Supportability and maintainability measures (impact assessment agility)
- Measures for security
- Identify typical digital artifacts
- Specify leading indicators

Plan to start Framework 2.0 development activity this November

THANK YOU

Stay connected with us online.

