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• Example Application Cases:
ØSimulated Mission
ØReal-time Mission
ØTasking/Collecting Demonstration

• Technical Architecture
ØEvent-driven Architecture
ØApplication Interfaces

Presentation Overview
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• Context and Background
ØNASA's Earth Science Program
ØNew Observing Strategies (NOS)

• NOS Testbed Framework
ØDevelopment Principles
ØConcept of Operations
ØGovernance
ØSystem Architecture
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Earth Science Decadal Survey Strategy Elements

1. Sustained Science and Applications
2. Innovative Methodologies
3. Cross-Benefit of Science and Applications
4. External Resources and Partnerships
5. Programmatic Agility and Balance
6. External Trends
7. Competition
8. Ambitious Science and Applications

https://doi.org/10.17226/24938
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• Optimize measurement 
acquisition using diverse 
observing capabilities
• Observe phenomena from 

different spatial, temporal, 
and spectral vantage points
• Coordinate observations 

based on events, forecasts, or 
science models
• Leverage NASA and non-

NASA assets and data sources

New Observing Strategies (NOS)
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• Validate NOS technologies 
independently and as a 
system
• Demonstrate new distributed 

operational concepts
• Enable comparisons of 

competing technologies
• Socialize new technologies 

and concepts with the science 
community and reduce risk

NOS Testbed (NOS-T) Programmatic Objectives
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NOS-T Design and Development Objectives
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• Enable disparate organizations to propose and participate in 
developing NOS software and information tech using the Testbed
• NOS-T Framework Architecture:

ØGovernance 
ØConcept of Operations
ØTechnical Protocols and Interfaces

• Iteratively develop prototypes and demonstrate NOS-T operation for a 
representative Earth science mission with at least three nodes
ØVersion 1.0 (18 months ending February 2022)
ØVersion 2.0 (18 months ending August 2023)
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Roles
Currently 
Fulfilled 
by SERC
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NOS-T Framework: Governance

NOS-T
Operator

NOS Program 
Management

NOS 
Investigator

NOS
Community

NOS-T
Developer

NOS-T Interface

NOS-T
Infrastructure
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Testbed

Investigator

Program Mgt.
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NOS-T Framework: Concept of Operations

Formulation

Review and Approve 
Proposal

Proposal, Approval

Propose Test Suite

NOS-T Interface

Publish Interface 
Specification

Initialization

Develop Test Suite

Test Suite

Integrate/Implement 
Test Suite

Execution

Review and Modify 
Test Runs

Preliminary Results

Conduct Test Runs

Review

Receive Final Results

Final Results

Prepare Post-
processed Raw Data

Publication

Review and Approve 
Results

Technical Report, 
Approval

Synthesize and 
Report Results

Feedback, Lessons 
Learned

Review Feedback 
and Lessons Learned
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Modularity: loose coupling allows 
components to be added or updated 

without modifying the testbed

Extensibility: vary the number or 
capabilities of user applications to 
explore a wide range of test cases

Usability: allow members of the 
Earth science community to develop 

test cases and user applications 
without a substantial learning curve

NOS-T Framework: Technical Principles

9

Geographic distribution: 
user applications interconnect using 
standard network interfaces

Multi-party participation: 
user applications exchange limited 
information via standard messaging 
protocols

Security: encrypt transport data, 
provide fine-grain access control 
rules, monitor hosted infrastructure 
on authorized information systems
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NOS-T Graphical Concept

NOS-T
InfrastructureNOS PI User

Application

Manager
Application

NOS-T
Operator

NOS-T System
User System

NOS PI User
Application

NOS
Test Suite

NOS PI User
Application

Event 
Broker
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Event-driven Architecture
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• Applications communicate state 
changes via events (messages)
Ø Published to topics
Ø Event broker notifies all subscribers

• Broker: Solace PubSub+ Standard
Ø MQTT messaging protocol
Ø Up to 1000 concurrent connections 

and 10,000 messages/second
Ø Hosted on the Science Managed 

Cloud Environment (SMCE), a FISMA 
Low cloud information system

User
App

User
App 

Network

User
App

Event Broker
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• Investigate fire hazard detection 
in the continental U.S.
Ø Initiate fires using 2020 VIIRS data
ØRemote observation by three-

satellite constellation
ØData downlink to ground station
ØEvaluation of key performance 

measures (observation latency)
• Extensible to design-of-

experiment studies to assess 
observation system variables

Application Case 1: Simulated Time Execution
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5-day (at 60x Scale) Scenario; Playback Speed ~90x

ANNUAL SPONSOR RESEARCH REVIEW
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• Fires: publishes fire location, 
records times started, detected, 
reported
• Ground: publishes ground station 

location
• Satellites: models orbit 

propagation, detects 
fires, reports fires when link to 
Ground is possible
• Scoreboard: displays graphical 

representation of mission

FireSat+ Test Case Architecture

14
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• Topic: 
Ø nost-001/fires/location

• Payload:
Ø Fire ID, ignition lat/lon, timestamp

• Topic:
Ø nost-001/satellite/detected
Ø nost-001/satellite/reported

• Payload:
Ø Fire ID, satellite ID, timestamp, state

FireSat+ Interface Sample
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NOS-T Technical Interface

Pre-
Initialization

Termination

Execution

Manager
App

User
App

INITIALIZE

READY

START

MODE: INITIALIZING

MODE: INITIALIZED

MODE: EXECUTING

TIME STATUS 1

TIME STATUS n

STOP

MODE: TERMINATING

MODE: TERMINATED

• Initialize = Start application

• Start = Begin Test Run

• Stop = Stop Test Run

• Ready = Ready to 
Start Test Run

• Mode: Initializing = 
App begins initialization

• Mode: Initialized = 
App is initialized

• Mode: Executing = 
App is Executing

• Time Status = 
Heartbeat

• Mode: Terminating = 
App begins termination

• Mode: Terminated = 
App has terminated run

Manager App
Messages

User App
Messages
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Application Case 2: Real-time Test Case
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• Real-time stream gauge data 
retrieved via web requests from 
the USGS National Water 
Information System (NWIS)
Ø Displays flow rates from two sensors 

on a dashboard – Mississippi River 
above and below Minneapolis/St. 
Paul

Ø Demonstrates ability to use real-time 
data for a test case

• Extensible to trigger spacecraft 
observations when certain flow 
rates are met
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Real-time Case: Application Architecture

Publish Flow
Rates

Request Stream 
Gauge Data

Message Broker
Host & App

NOS-T
Infrastructure 

Subscribe to
Flow Rates

Update Dashboard
In Real Time
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15-hour (real-time) scenario; 2000x playback
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Application Case 3: NOS-Live (NOS-L) Demonstration

• Design and demonstrate an event-driven 
architecture to automatically task, collect, 
and integrate data products into forecasts
• Essentially a four-node problem:

ØScience application identifying area of interest 
(Lon, Lat, time window) – NASA GSFC

ØTasking application to interface with 
commercial satellite provider API – NASA JPL

ØCommercial satellite providers with automated 
API interface

ØData transfer application to move collected 
data products to correct location – Stevens

NOS-T Communication

DISCOVER

Tasking 
Application 

Commercial 
Satellite 

Observations

Data Transfer 
Application
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Tasking Sequence Diagram (Capella)
LIS/GEFS

(hosted on DISCOVER)
Tasking Application Capella API

NOS-T Message 
Broker

(EC2 Instance)

Needed for Task Request: Name, Description 
(optional), Coordinates, window (open, close), 

priority

POST: Token Request (url, headers, 
auth)

Response: accessToken, refreshToken, 
expiresIn

POST: Task Request 
(url, headers with bearer token, json body)

Response: taskingrequestId

GET: Task Request Status
(url with taskingrequestId, headers with bearer 

token)
Response: statusHistory code = ‘review’ 

(order cost summary)

PATCH: Approve Request
(url with taskingrequestId, headers with bearer 

token, json = {“status”:”approved”})

GET: Task Request Status
(url with taskingrequestId, headers with bearer 

token)
Response: statusHistory code = 

‘completed’
GET: Collections List

(url with taskingrequestId, headers with bearer 
token)

Response: orderId, collectId, granuleId

Keeping Track of Orders/Costs:
taskingrequestId, order cost

NOTE: PATCH 
unnecessary if 
preApproved = 
TRUE

Trigger Manual 
Workflow for 
SWE Product

Finished Task: tasking/completed, collect_id
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Data Access Sequence Diagram (Capella)
S3 Bucket Pull 

Application 
(hosted on DISCOVER) 

Capella API

Workflow for 
SWE Product 
complete when 
pushed to S3 
bucket

S3 Bucket
(nos-l-demo)

Query: Regularly 
monitoring S3 Bucket for 
activity

Notify of Availability Triggered: SWE 
Product ready for transfer (filename for 

https endpoint)

Trigger: initiate 
transfer from S3 

bucket to 
directory for 

LIS/GEFS

SWE Product Delivered for Forecast 
Integration

Get request with https endpoint: 
https://nos-l-demo.s3.us-east-1.amazonaws.com/ + 

filename

NOTE: NOS-T Message Broker not 
involved in get requests or data transfer 
that follow

NOTE: No empty EOT.txt 
necessary, as trigger 
waits until upload is 
completeCloudFron

t

NOS-T Message 
Broker

(EC2 Instance)

https://nos-l-demo.s3.us-east-1.amazonaws.com/
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Amazon Web Services: Supporting Architecture

AWS

NOS-T
Solace PubSub+ 

Event Broker

(EC2 instance)

NOS-T 
Monitor

(EC2 instance)

nos-l-demo

(S3 bucket)
NOTE: NOT public

nos-l-demo-
bucket-watch

(lambda function)

EJB3EE79572CS

(CloudFront Distribution)

vpc-4e7b3b34

(VPC with NAT 
Gateway)

ObjectCreated Trigger

Capella
Data Products Pushed to S3 Bucket

nos-l-troubleshoot
Allowed by 

permissions policy

Published to 
brokerURL 

testbed.mysmce.co
m

Whitelisted 
IP addresses

GSFC
(end users)

Messages sent to 
subscribers

Automated 
get request 
from https 
endpoint
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Summary

• NOS-T provides computational platform to prototype NOS missions
• NOS-T framework provides an initial governance model, concept of 

operations, and technical interface specification
ØEvent-driven architecture
ØSimulated and real-time execution

• NOS-T Tools Python library available under an open-source license: 
ØRepository: https://github.com/code-lab-org/nost-tools
ØDocumentation: https://nost-tools.readthedocs.io/en/latest/

https://github.com/code-lab-org/nost-tools
https://nost-tools.readthedocs.io/en/latest/
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THANK YOU
Stay connected with us online.


