
N O V E M B E R 1 6|

New Observing Strategies Testbed
(NOS-T) Design and Development

Sponsor: NASA Earth Science Technology Office

ART-015 (PI: Dr. Paul Grogan)

Presenter: Dr. Matthew J. LeVine

N O V E M B E R 1 6|

• Example Application Cases:
ØSimulated Mission
ØReal-time Mission
ØTasking/Collecting Demonstration

• Technical Architecture
ØEvent-driven Architecture
ØApplication Interfaces

Presentation Overview

2

• Context and Background
ØNASA's Earth Science Program
ØNew Observing Strategies (NOS)

• NOS Testbed Framework
ØDevelopment Principles
ØConcept of Operations
ØGovernance
ØSystem Architecture

N O V E M B E R 1 6| 3

Earth Science Decadal Survey Strategy Elements

1. Sustained Science and Applications
2. Innovative Methodologies
3. Cross-Benefit of Science and Applications
4. External Resources and Partnerships
5. Programmatic Agility and Balance
6. External Trends
7. Competition
8. Ambitious Science and Applications

https://doi.org/10.17226/24938

N O V E M B E R 1 6|

• Optimize measurement
acquisition using diverse
observing capabilities
• Observe phenomena from

different spatial, temporal,
and spectral vantage points
• Coordinate observations

based on events, forecasts, or
science models
• Leverage NASA and non-

NASA assets and data sources

New Observing Strategies (NOS)

4

N O V E M B E R 1 6|

• Validate NOS technologies
independently and as a
system
• Demonstrate new distributed

operational concepts
• Enable comparisons of

competing technologies
• Socialize new technologies

and concepts with the science
community and reduce risk

NOS Testbed (NOS-T) Programmatic Objectives

5

N O V E M B E R 1 6|

NOS-T Design and Development Objectives

6

• Enable disparate organizations to propose and participate in
developing NOS software and information tech using the Testbed
• NOS-T Framework Architecture:

ØGovernance
ØConcept of Operations
ØTechnical Protocols and Interfaces

• Iteratively develop prototypes and demonstrate NOS-T operation for a
representative Earth science mission with at least three nodes
ØVersion 1.0 (18 months ending February 2022)
ØVersion 2.0 (18 months ending August 2023)

N O V E M B E R 1 6|

Roles
Currently
Fulfilled
by SERC

7

NOS-T Framework: Governance

NOS-T
Operator

NOS Program
Management

NOS
Investigator

NOS
Community

NOS-T
Developer

NOS-T Interface

NOS-T
Infrastructure

N O V E M B E R 1 6|

Testbed

Investigator

Program Mgt.

8

NOS-T Framework: Concept of Operations

Formulation

Review and Approve
Proposal

Proposal, Approval

Propose Test Suite

NOS-T Interface

Publish Interface
Specification

Initialization

Develop Test Suite

Test Suite

Integrate/Implement
Test Suite

Execution

Review and Modify
Test Runs

Preliminary Results

Conduct Test Runs

Review

Receive Final Results

Final Results

Prepare Post-
processed Raw Data

Publication

Review and Approve
Results

Technical Report,
Approval

Synthesize and
Report Results

Feedback, Lessons
Learned

Review Feedback
and Lessons Learned

N O V E M B E R 1 6|

Modularity: loose coupling allows
components to be added or updated

without modifying the testbed

Extensibility: vary the number or
capabilities of user applications to
explore a wide range of test cases

Usability: allow members of the
Earth science community to develop

test cases and user applications
without a substantial learning curve

NOS-T Framework: Technical Principles

9

Geographic distribution:
user applications interconnect using
standard network interfaces

Multi-party participation:
user applications exchange limited
information via standard messaging
protocols

Security: encrypt transport data,
provide fine-grain access control
rules, monitor hosted infrastructure
on authorized information systems

N O V E M B E R 1 6| 10

NOS-T Graphical Concept

NOS-T
InfrastructureNOS PI User

Application

Manager
Application

NOS-T
Operator

NOS-T System
User System

NOS PI User
Application

NOS
Test Suite

NOS PI User
Application

Event
Broker

N O V E M B E R 1 6|

Event-driven Architecture

11

• Applications communicate state
changes via events (messages)
Ø Published to topics
Ø Event broker notifies all subscribers

• Broker: Solace PubSub+ Standard
Ø MQTT messaging protocol
Ø Up to 1000 concurrent connections

and 10,000 messages/second
Ø Hosted on the Science Managed

Cloud Environment (SMCE), a FISMA
Low cloud information system

User
App

User
App

Network

User
App

Event Broker

N O V E M B E R 1 6|

• Investigate fire hazard detection
in the continental U.S.
Ø Initiate fires using 2020 VIIRS data
ØRemote observation by three-

satellite constellation
ØData downlink to ground station
ØEvaluation of key performance

measures (observation latency)
• Extensible to design-of-

experiment studies to assess
observation system variables

Application Case 1: Simulated Time Execution

12

Δ𝑡

1

2

0

N O V E M B E R 1 6| 13

5-day (at 60x Scale) Scenario; Playback Speed ~90x

ANNUAL SPONSOR RESEARCH REVIEW

N O V E M B E R 1 6|

• Fires: publishes fire location,
records times started, detected,
reported
• Ground: publishes ground station

location
• Satellites: models orbit

propagation, detects
fires, reports fires when link to
Ground is possible
• Scoreboard: displays graphical

representation of mission

FireSat+ Test Case Architecture

14

N O V E M B E R 1 6|

• Topic:
Ø nost-001/fires/location

• Payload:
Ø Fire ID, ignition lat/lon, timestamp

• Topic:
Ø nost-001/satellite/detected
Ø nost-001/satellite/reported

• Payload:
Ø Fire ID, satellite ID, timestamp, state

FireSat+ Interface Sample

15

N O V E M B E R 1 6| 16

N O V E M B E R 1 6| 17

NOS-T Technical Interface

Pre-
Initialization

Termination

Execution

Manager
App

User
App

INITIALIZE

READY

START

MODE: INITIALIZING

MODE: INITIALIZED

MODE: EXECUTING

TIME STATUS 1

TIME STATUS n

STOP

MODE: TERMINATING

MODE: TERMINATED

• Initialize = Start application

• Start = Begin Test Run

• Stop = Stop Test Run

• Ready = Ready to
Start Test Run

• Mode: Initializing =
App begins initialization

• Mode: Initialized =
App is initialized

• Mode: Executing =
App is Executing

• Time Status =
Heartbeat

• Mode: Terminating =
App begins termination

• Mode: Terminated =
App has terminated run

Manager App
Messages

User App
Messages

N O V E M B E R 1 6|

Application Case 2: Real-time Test Case

18

• Real-time stream gauge data
retrieved via web requests from
the USGS National Water
Information System (NWIS)
Ø Displays flow rates from two sensors

on a dashboard – Mississippi River
above and below Minneapolis/St.
Paul

Ø Demonstrates ability to use real-time
data for a test case

• Extensible to trigger spacecraft
observations when certain flow
rates are met

N O V E M B E R 1 6| 19

Real-time Case: Application Architecture

Publish Flow
Rates

Request Stream
Gauge Data

Message Broker
Host & App

NOS-T
Infrastructure

Subscribe to
Flow Rates

Update Dashboard
In Real Time

N O V E M B E R 1 6| 20

15-hour (real-time) scenario; 2000x playback

N O V E M B E R 1 6| 21

Application Case 3: NOS-Live (NOS-L) Demonstration

• Design and demonstrate an event-driven
architecture to automatically task, collect,
and integrate data products into forecasts
• Essentially a four-node problem:

ØScience application identifying area of interest
(Lon, Lat, time window) – NASA GSFC

ØTasking application to interface with
commercial satellite provider API – NASA JPL

ØCommercial satellite providers with automated
API interface

ØData transfer application to move collected
data products to correct location – Stevens

NOS-T Communication

DISCOVER

Tasking
Application

Commercial
Satellite

Observations

Data Transfer
Application

N O V E M B E R 1 6|

Tasking Sequence Diagram (Capella)
LIS/GEFS

(hosted on DISCOVER)
Tasking Application Capella API

NOS-T Message
Broker

(EC2 Instance)

Needed for Task Request: Name, Description
(optional), Coordinates, window (open, close),

priority

POST: Token Request (url, headers,
auth)

Response: accessToken, refreshToken,
expiresIn

POST: Task Request
(url, headers with bearer token, json body)

Response: taskingrequestId

GET: Task Request Status
(url with taskingrequestId, headers with bearer

token)
Response: statusHistory code = ‘review’

(order cost summary)

PATCH: Approve Request
(url with taskingrequestId, headers with bearer

token, json = {“status”:”approved”})

GET: Task Request Status
(url with taskingrequestId, headers with bearer

token)
Response: statusHistory code =

‘completed’
GET: Collections List

(url with taskingrequestId, headers with bearer
token)

Response: orderId, collectId, granuleId

Keeping Track of Orders/Costs:
taskingrequestId, order cost

NOTE: PATCH
unnecessary if
preApproved =
TRUE

Trigger Manual
Workflow for
SWE Product

Finished Task: tasking/completed, collect_id

N O V E M B E R 1 6|

Data Access Sequence Diagram (Capella)
S3 Bucket Pull

Application
(hosted on DISCOVER)

Capella API

Workflow for
SWE Product
complete when
pushed to S3
bucket

S3 Bucket
(nos-l-demo)

Query: Regularly
monitoring S3 Bucket for
activity

Notify of Availability Triggered: SWE
Product ready for transfer (filename for

https endpoint)

Trigger: initiate
transfer from S3

bucket to
directory for

LIS/GEFS

SWE Product Delivered for Forecast
Integration

Get request with https endpoint:
https://nos-l-demo.s3.us-east-1.amazonaws.com/ +

filename

NOTE: NOS-T Message Broker not
involved in get requests or data transfer
that follow

NOTE: No empty EOT.txt
necessary, as trigger
waits until upload is
completeCloudFron

t

NOS-T Message
Broker

(EC2 Instance)

https://nos-l-demo.s3.us-east-1.amazonaws.com/

N O V E M B E R 1 6|

Amazon Web Services: Supporting Architecture

AWS

NOS-T
Solace PubSub+

Event Broker

(EC2 instance)

NOS-T
Monitor

(EC2 instance)

nos-l-demo

(S3 bucket)
NOTE: NOT public

nos-l-demo-
bucket-watch

(lambda function)

EJB3EE79572CS

(CloudFront Distribution)

vpc-4e7b3b34

(VPC with NAT
Gateway)

ObjectCreated Trigger

Capella
Data Products Pushed to S3 Bucket

nos-l-troubleshoot
Allowed by

permissions policy

Published to
brokerURL

testbed.mysmce.co
m

Whitelisted
IP addresses

GSFC
(end users)

Messages sent to
subscribers

Automated
get request
from https
endpoint

N O V E M B E R 1 6| 25

Summary

• NOS-T provides computational platform to prototype NOS missions
• NOS-T framework provides an initial governance model, concept of

operations, and technical interface specification
ØEvent-driven architecture
ØSimulated and real-time execution

• NOS-T Tools Python library available under an open-source license:
ØRepository: https://github.com/code-lab-org/nost-tools
ØDocumentation: https://nost-tools.readthedocs.io/en/latest/

https://github.com/code-lab-org/nost-tools
https://nost-tools.readthedocs.io/en/latest/

N O V E M B E R 1 6|

Acknowledgements

26

This material is based on work supported, in whole or in part, by the U.S.
Department of Defense through the Systems Engineering Research
Center (SERC) under Contract No. W15QKN-18-D-0040.
Thanks to team members Brian Chell, Leigha Capra, Theodore Sherman
and alumni Hayden Daly and Matthew Brand for their contributions.
PI: Paul Grogan, pgrogan@stevens.edu, 201-216-5378

mailto:pgrogan@stevens.edu

N O V E M B E R 1 6|

THANK YOU
Stay connected with us online.

