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Motivation
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• Operation Anaconda[1], 2002
Ø Initial use of “big Army” forces in OEF
ØUnclear delineation of authorities across hierarchy
ØCENTCOM approval for some tactical actions
ØModern ICT ≠ clear, concise communication

Traditional, centralized structure lacked 
robust performance

GlobalSecurity.org
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Literature
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Decentralization and the “-ilities”
ØTied to

§ Agility, Adaptability[2-3]
§ Flexibility[4-6]
§ Scalability[7-8]
§ Evolvability[9-11]

Decentralized Architecture
ØNot frequently explored in isolation 

from other related principles
§ Non-hierarchical Integration[4-6]
§ Modularity[9-11]

Frick & Schulz[2]
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Research Question
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• How does decentralization in a system’s decision-making architecture 
influence the system’s performance robustness?

Methodology

• Model a C2 system capable of adopting a range of decision 
architectures, from centralized to decentralized 
• Simulate an operating environment sufficiently diverse and dynamic to 

stress the system
• Observe performance and robustness characteristics (Experiment 1)
• Explore decentralization schemes to improve robustness (Experiment 2)
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System Description
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• Theater Air Control System
ØDirects combat aircraft to neutralize targets 
ØConsists of decision agents
ØConnected though hierarchical relationships

• System Functions
ØDetects targets across battlespace
ØDistributes information to decision-makers
ØDecides how to use assets to neutralize 

targets

• Decision-making
ØControl is consolidated at single echelon (1, 

2, or 3)

(1)

(2)

(3)
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Environment Description
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• 3 dimensions, 3 discrete treatment levels
Ø Intensity – amount of targets, assets
ØNetwork Speed – message propagation delay
ØAsset Capability – how fast, far aircraft can travel

• 33 discrete “circumstances” from which to 
assess robustness
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Methodology
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Experiment 1 - Effectiveness
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• Effectiveness = % targets neutralized

• No “one size fits all” architecture
• Centralized (1)

ØHigh performance
ØSignificant degradation in challenging 

conditions

• Decentralized (3) 
ØLower, more stable performance
Ø Inhibited by low intensity
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Experiment 1 - Robustness
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• How effectively the system 
maintains capability[12]
ØPortion of circumstances where 

system maintains adequate 
effectiveness

• e.g. Requirement: 90% eff.
Ø (1) Robustness: ⁄!" #$ = .55

• Robustness depends on the 
performance requirement
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Experiment 1 - Robustness
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• Still no “one size fits all” architecture
• Each architecture is best, worst, 

middle
• Centralized (1) 

ØHigher expected robustness at high 
levels of required performance

• Decentralized (3)
ØHighest expected robustness only at 

modest performance requirement
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Insights on Decentralization
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• Decentralized
ØAgents spend significant time waiting for assets, or wasting assets waiting for 

targets
ØPerformance dependent on

§ right number of assets
§ right agent
§ right time

• Centralized
ØVery little waste…never an idle asset so long as the agent knows about a target
Ø Information takes time to propagate when the comm network is degraded
ØLarge geographic scope requires high asset capability
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Methodology
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• Model a C2 system capable of adopting a range of decision architectures, from 
centralized to decentralized 
• Simulate an operating environment sufficiently diverse and dynamic to stress the 

system
• Observe performance and robustness characteristics (Experiment 1)
• Explore decentralization schemes to improve robustness (Experiment 2)
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Experiment 2 – Hybrid Architectures
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• Decentralized routine, local decision-making 
(directing assets to targets)
• Centralized asset allocation
• Three alternative architectures:

Ø (2,1) – Allocate at echelon 1, direct at echelon 2
Ø (3,2) – Allocate at echelon 2, direct at echelon 3
Ø (3,1) – Allocate at echelon 1, direct at echelon 3
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Experiment 2 - Effectiveness
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• Performance +/- over their 
associated archetype
Ø (2) → (2,1)
Ø (3) → (3,2) (3,1)

• Highest performance gains across 
the most challenging contexts
ØLow intensity

• Losses where network is slow
ØDelayed info → poor allocation
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Comparison of “Best” Architectures per Circumstance
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• Fully centralized archetype still 
dominates “most ideal” 
circumstances
• Fully decentralized archetype 

outperforms in “worst” 
conditions
• Most of the middle ground now 

“bested” by hybrid architectures
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Experiment 2 - Robustness
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• Architectures (2,1), (3,1), and (3,2) 
more robust than archetypes
• Still no “most robust” architecture

ØPerformance requirement informs 
desired architecture
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Conclusion
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• There is no best degree of decentralization
• Centralized archetype

Ø Capable of very high performance under ideal conditions
Ø “Most robust” only while requisite performance is high

• Decentralized architecture 
Ø Lower, but more stable performance 
Ø Exhibited high expected robustness only at modest requisite performance

• The most-robust architecture depends on the required performance of the 
system

• Centralizing system-consequential functions while decentralizing repetitive, 
“local” functions improved performance, robustness over archetypes
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THANK YOU
Stay connected with us online.
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