

Study of Equivalence in Systems Engineering within the Frame of Verification and Systems Theory

Paul Wach, Virginia Tech

PhD Candidate

Alejandro Salado and Peter Beling; Advisors and Committee Co-Chairs

SERC DOCTORAL STUDENT FORUM 2022

What to do you think when you hear/read...?

Mass mock-up

Pedigree

Breadboard

Verification Model

Fidelity

Prototype

Based on what relationships do we define verification models?

Are the relationships explicit/implicit and/or descriptive/analytical?

What is verification?

*Is this intuitively consistent with current SE practice?

**Do we mathematically define these relationship?

**What assumptions are made?

Base on what relationships do we define verification models?

Why is this important? Mathematical Theory in Other Domains

- Current forms of MBSE are descriptive and do not have theoretical foundations
- Other engineering domains have theoretical foundations upon which software platforms are implemented
- Reinvigorated calls for theoretical foundations of SE

https://engineering.purdue.edu/~ee255/lecturesupp_files/P Spice-Tutorial.pdf

<< Computational fluid dynamics

^ Finite element analysis ^

Based on what relationships should we define verification models?

[1] Literature Review

Hypothesis:

Define research question

We should defineverification models (VM) based on theoretical relationships to/from/between:

- System Requirements (SR)
- Verification requirements (VR)
- System Designs (SD)

Review of the literature reveals gaps as well as potential theoretical foundations

Theory of Problem Spaces of Functions

- WymorianSystems Theory:
 - An open system is defined as a transformation of inputs into outputs
- All system requirements can be modeled as required transformations of inputs into outputs
- Dissertation adds that aspects of a verification requirement may be captured problem spaces of functions
 - Verification requirement problem spaces (VRPS)

Further Wymorian Systems Theory

Theory of Modeling and Simulation (DEVS)...computational systems theory

Tricotyledon Theory of System Design (T3SD)...MBSE

HarnessingWymorian Systems Theory to address the research questions

software validation

'Out of simplicity arises complexity'

-Systems Thinking Made Simple, Derek Cabrera

Tabular mathematical models and their instantiation

Problem spaces of functions (PSF) and System requirements (SR)

• PSF

- Seven subsets of one superset
- Defined at Level 0

• SR

- Instantiated superset of PSF
- On/off-commands
- > Yellow-light
- > Water-resistances
- SR subsets
 - Explore assumptions of treating individual SR as orthogonal

PSF and Verification requirement problem spaces (VRPS)

VRPS

- > Instantiated subsets of PSF
- ≻ VRPS1 pizza
- VRPS2 on/off/yellow-light
- ≻ VRPS3 water resistance
- ➤ VRPS4 on/off/blue-light
- > VRPS5 0/1

Tabular mathematical models and their instantiation

System Models (SM)

System Designs (SD)

• SM

- ≻ Thirteen SM
- Seven defined at Level 1 (nocomponents defined)
- Six defined at Level 2 (components and coupling)

- SM instantiated to form SD
 - > SD1 2-state, L1
 - > SD2 3-state, L2
 - > SD3 paired with SD1
 - > SD4 paired with SD2

Tabular mathematical models and their instantiation: Verification Models

• VM1 > SD1

• VM2

 \rightarrow SD2

• VM3 > SD3

• VM4 > SD4

- VM5
 - SD1-based, water-proof

• VM6

> Yellow-light, 2-state

- VM7 ≻ 0/1
- VM8
 - > Blue-light, 2-state
- VM9
 - Blue-light, 3-state
- VM10
 - ➤ RGB ink pen
- VM11 > pizza
- VM12 ≻ fire flies

- VM13
 - ▹ Hand-radio
- VM14
 - Pressure vessel
 A15
- VM15 > Dry-bag
- VM16
 > Dry-bag w/ fireflies
- VM17
 - > Water-proof hand-radio
- VM18
 - Submarine w/ yellowlight

Verification Model Morphic Conditions (VMMC)for equivalence between VM and SD

Morphisms	Summary description	Notional example	•
Homomorphism	A mapping of the preservation of equivalence between a pair of system specifications of the same algebraic structure	One mechanical spring to another mechanical spring	
Isomorphism	Is a homomorphism with a one-to-one mapping	Mechanical spring to electric circuit	
Parameter morphism	A mapping of the preservation of equivalence between parameters spaces of a pair of system specifications	Parameters of the mechanical spring to parameters of the electric circuit	
Identity parameter morphism	Is a parameter morphism with an equality between parameter values and units	Parameters of a mechanical spring to parameters same (or potentially another) mechanical spring	
Identity isomorphism	Is an isomorphism with equality mapping in underlying mathematical structure and parameter space	The same mechanical spring to the same mechanical spring	

- Morphism(s) may occur at:
 - L0 between PSF/SR/VRPS
 - L1/L2 between SM/SD/VM
- Parameters are associated with:
 - ➢ input/output (I/O) items
 - physical interfaces (IF)
- VMMC define conditions of desired pedigree between the VM and SD; examples:
 - L1 homomorphism
 - L2 identity isomorphism
- Note(s):
 - Equivalence vs equality
 - Pedigree vs fidelity

Research Outcome

- Comparison to state of SE practice confirms uniqueness of research
 - E.g.; SysMLv1.6 implicit/descriptive versus explicit/analytical
- The results suggest that VM should be defined based on:
 - Mathematically characterized interrelationships between SR, SD, and VR consisting of VRPS and VMMC
- Gap in SE research/practice identified and new area of study opened

«requirement»

THANK YOU

Stay connected with us online.

Paul Wach paulw86@vt.edu

PhD defense date set for 2022 Dec 01