

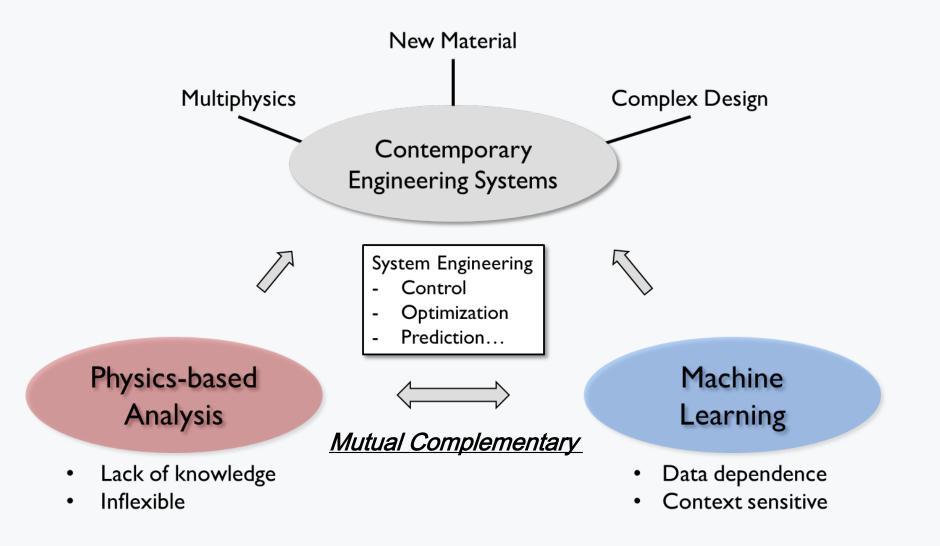
Physics-informed Machine Learning for System Intelligence

Cheolhei Lee, Virginia Tech

Dr. Xiaowei Yue

SERC DOCTORAL STUDENT FORUM 2022

Introduction



Motivation

• Example 1: Composite fuselage assembly (aircraft manufacturing)

- > The shape control process is subject to:
 - (i) intrinsic uncertainty; (ii) material complexity; and (iii) failure risks
- > Conventional control theory is suboptimal and time-consuming (trial-and-error)

Fig 1. Subsections of Boeing 787. (from Tangel and J. R. Brinson, "What's holding back Boeing's 787 Dreamliner?" WSJ, June 26 2022)

Fig 2. Shape control process

Motivation

- Example 2: Multiphysics material analysis
 - > Response is extremely complex to interpret existing physics
 - > Uncertainty quantification is intractable with physics
 - Conventional design of experiment (DoE) is inefficient

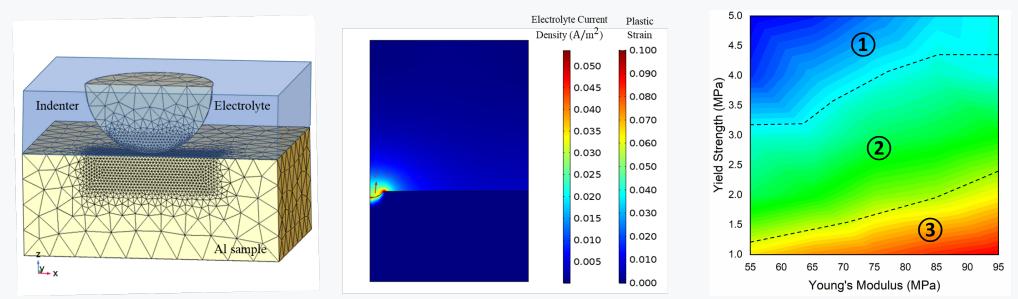


Fig 3. Tribocorrosion analysis for Al alloys (from Wang et al. "Multiphysics modeling and uncertainty quantification of tribocorrosion in aluminum alloys." *Corrosion Scient***2**8 (2021): 109095.)

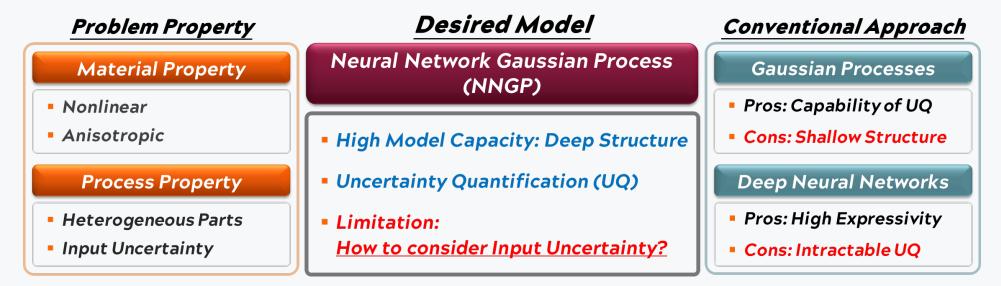
Research Overview

Physics-informed Machine Learning for System Informatics

Physical Characteristics	Uncertainty	Heterogeneity	Implicit Constraint
Solution	Uncertainty Quantification	Divide-and-Conquer	Constraint Model
Method	NNGP considering Input Uncertainty (NNGPIU)	Partitioned Active Learning (PAL)	Physics-constrained Active Learning (PhysCAL)
Usage	Modeling	Data Acquisition	
Applications	Simulation, Control, Design Optimization, etc.		

Neural Network GP considering Input Uncertainty

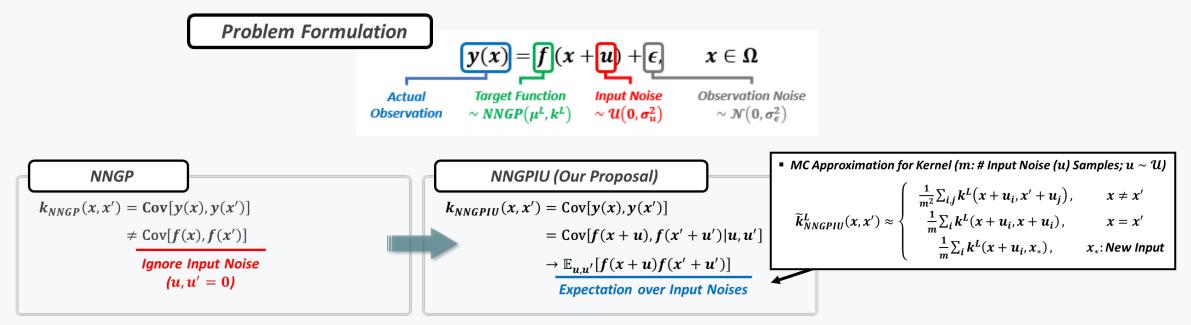
• Motivation: Surrogate modeling of complex system under input uncertainty



- Neural network Gaussian process (NNGP)
 - → Gaussian process (GP) induced from infinite-width random deep neural networks
 - > Nonstationary GP with deep architecture using composite kernels

Neural Network GP considering Input Uncertainty

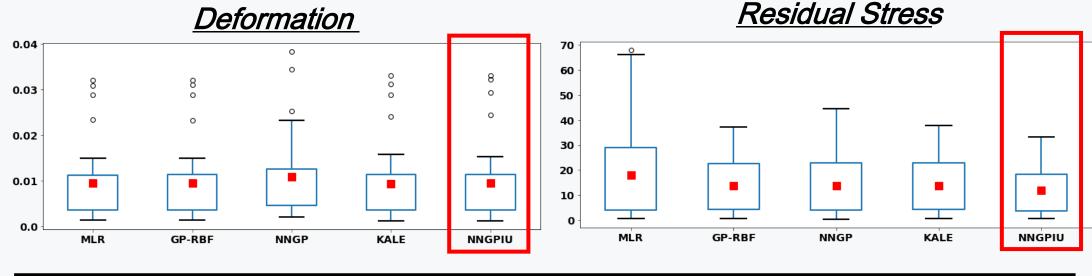
Method details



<u>Proposition 1.</u> NNGPIU is a Best Linear Unbiased Predictor (BLUP) of $f(x_*)$, which is subject to input noise, where x_* is an unobserved input. $\arg\min_{\beta} \|f(x_{new}) - \beta^\top y\|^2 = k_{NNGPIU}^L(x, X) [K_{NNGPIU}^L(X, X) + \sigma_{\epsilon}^2 I]^{-1}$.

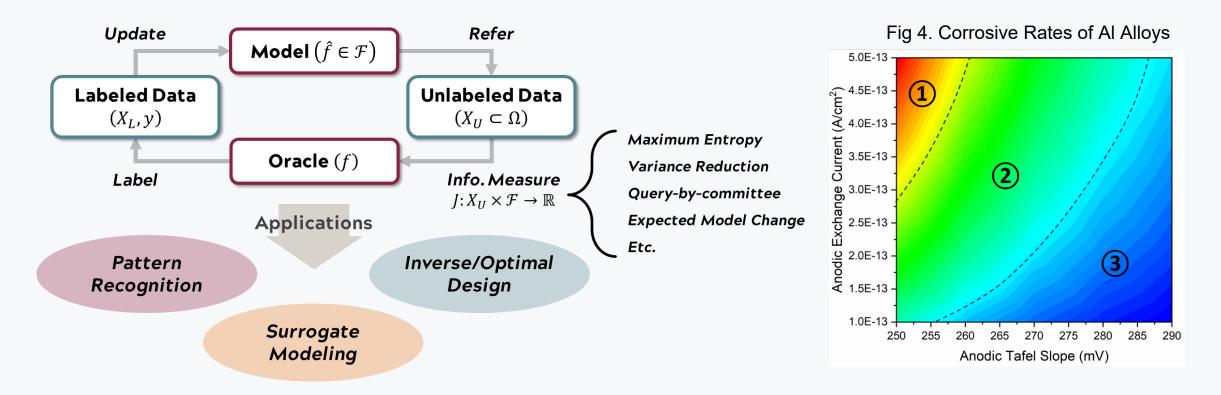
Neural Network GP considering Input Uncertainty

Application to composite fuselage shape control

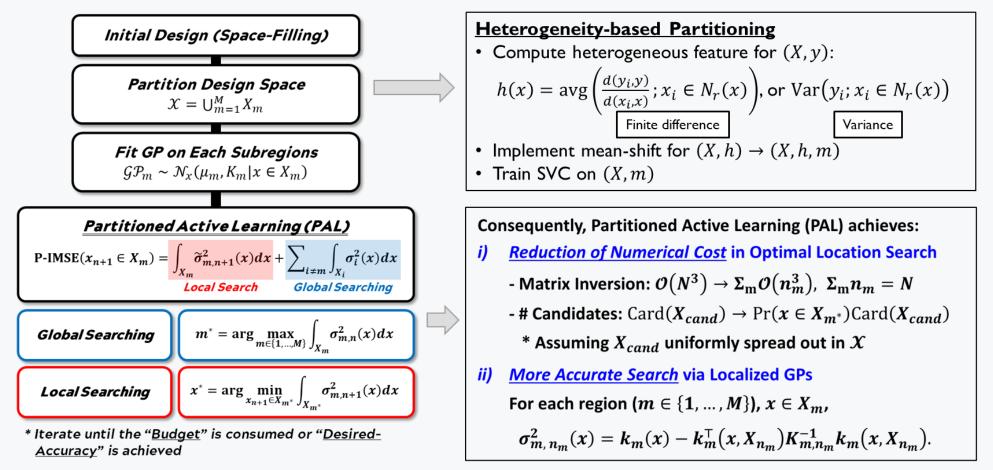


Model	Linear	Shallow GP	NNGP	KALE	NNGPIU
MAE (× 10 ⁻³ in)	9.37	9.42	10.84	9.29	9.35
MAE (psi)	18.143	13.668	13.619	13.742	11.884

• Motivation: Optimal design for heterogeneous systems



Method details



2-D simulation result

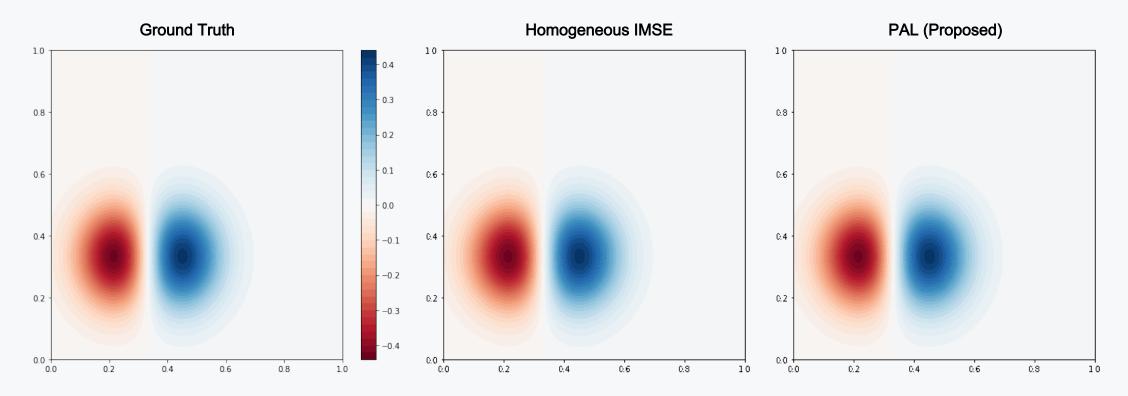
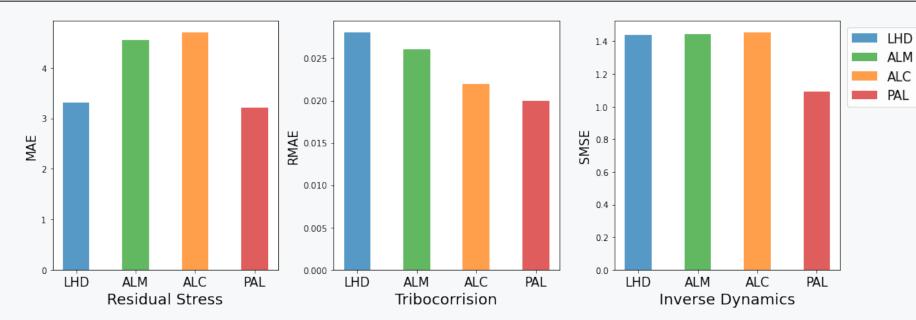


Fig 5. Comparison between ALC and PAL-D Samulation

Case study results

Case	Input Dims	Output Dims
Residual stress in shape control	10	I
Tribocorrosion rates of AI alloys	6	Ι
Inverse dynamics of robotic arm	21	7



- Motivation: avoid system failures in physicsnstrained systems
- Underestimating implicit constraints in active learning may induce:
 - ≻ Fatal system failures
 - Incompliant models

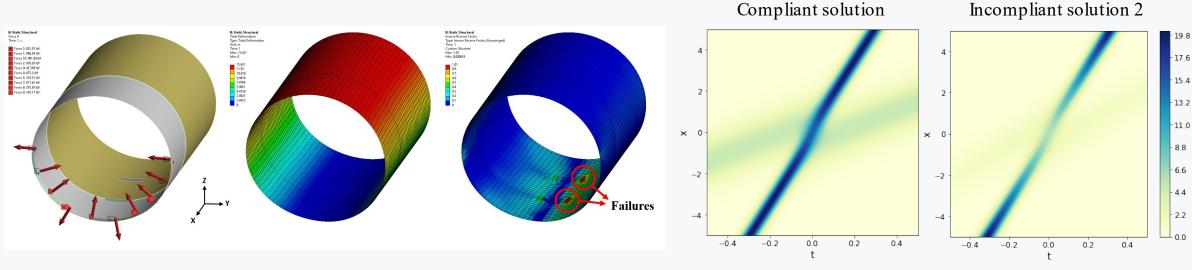
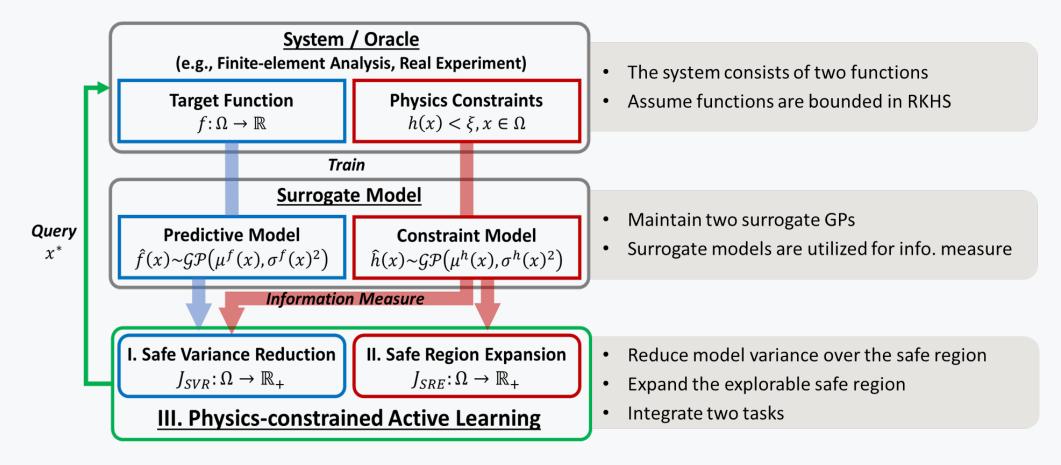


Fig 6. Composite fuselage shape control inducing material failures

Fig 7. Data-driven solutions of the Korteweg-de Vries (KdV)-Burgers equation

Method overview



Method details

I. Safe Variance Reduction (SVR)

- Consider *two-level safe regions* with the constraint model as $S(S^+) = \{x | \Pr(\hat{h}(x) < \xi) < 1 - \gamma(\gamma^+)\}$ with $S \subseteq S^+$
- Choose $x \in S$ that reduces the model variance over S^+ the most $J_{SVR}(x \in S) = \int_{S^+} \operatorname{Var}\left(\hat{f}(s)\right) d\lambda(s) - \int_{S^+} \operatorname{Var}\left(\hat{f}(s|x)\right) d\lambda(s)$

* Note: S: safe region, S⁺: progressive safe region, λ : measure on Ω

III. Harmonizing Acquisition Functions

- Preference parameter (w): adjust balance between two criteria
- Multi-objective optimization formulation with Pareto optimality

$$x^* = \arg \max_{x \in S} (1 - w) J_{SVR}(x) + w J_{SRE}(x), w \in [0, 1]$$

II. Safe Region Expansion (SRE) • Choose the most informative data to *expand the explorable region* • Incorporate *uncertainty* and *closeness* to the safe boundary $J_{SRE}(x \in S) = \eta^{2}(\Phi^{h}(\xi) - \Phi^{h}(\xi - \eta) - \int_{\xi - \eta}^{\xi} (h - \xi)^{2} \phi^{h}(x) dh$ *Uncertainty* Closeness* Note: $\eta = \alpha \sigma^{h}(x) \ (\alpha > 0), \ \Phi^{h}(\cdot), \ \phi^{h}$: CDF, PDF of $\hat{h}(\cdot)$

IV. Theoretical Properties

- <u>Proposition 1.</u> (*Failure Probability*) For *N*-sampling, the failureaverse active learning has the probability of failure $\zeta = N\gamma$.
- <u>Proposition 2.</u> (Asymptotic Convergence) As $n \to \infty$, the acquisition function and S converge to zero and a subset of the true safe region.

- Application to composite fuselage shape control
 - > Target function: fuselage deformation (10 actuators)
 - > Constraint: composite material failure criterion (Tsai-Wu criterion)

$$\frac{\textbf{Tsai-Wu criterion}}{\sum_{i=1}^{2} \left(\frac{1}{\sigma_{i}^{T}} - \frac{1}{\sigma_{i}^{C}}\right) \sigma_{1} + \frac{\sigma_{i}^{2}}{\sigma_{i}^{T} \sigma_{i}^{C}} + \left(\frac{\tau_{12}}{\tau_{12}^{F}}\right)^{2} - \frac{\sigma_{1} \sigma_{2}}{\sigma_{1}^{T} \sigma_{1}^{C} \sigma_{2}^{T} \sigma_{2}^{C}} \geq \frac{1}{MS} \quad \textbf{MS (Margin of safety)=1.25}$$

> 20 initial samples + 20 samples with AL(10 replications)

≻ Result

Max Entropy	IMSE	SEGP	Proposed Method	
MAE # Fail	MAE # Fail	MAE # Fail	MAE # Fail	
2.244 4.1 0.470) (0.3)	2.046 3.8 (0.441) (0.6)	2.297 1.0 (0.305) (0.8)	2.832 0.1 (0.518) (0.3)	
2.	.244 4.1	244 4.1 2.046 3.8	244 4.1 2.046 3.8 2.297 1.0	

Summary and Conclusion

Торіс	Challenges	Contributions	Further Applications
NNGP Considering Input Uncertainty	 <u>Low expressivit</u>(GP) <u>Data-inefficien</u>t(DNN) Cannot addressinput <u>uncertaint</u>y(NNGP) 	 Developed dataefficient and highly expressive model that considers input uncertainty 	Modeling of complex systems with limited data Systems subject to intrinsic input uncertainty
Partitioned Active Learning	 Hindered learning by system<u>heterogeneity</u> 	 Incorporate the region classifier to <u>improve the validity of data</u> <u>importance</u> Hierarchical acquisition function with improved <u>computational cost</u> 	Multiphysics systems Geostatistics human health subject to ecologic heterogeneity
<i>Physics constrained Active Learning</i>	 <u>Implicit constrain</u>ts associated with system failure 	 <u>Development of acquisition functions</u> with implicit constraints Utilizing multi-objective optimization for <u>the flexibility of AL</u> 	Solving PDE problems Optimizing control policy with implicit constraints

THANK YOU

Stay connected with us online.

