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Introduction

New Material

Multiphysics Complex Design

~

Contemporary
Engineering Systems

f System Engineering &
- Control

Optimization
Prediction...

Physics-based — Machine
Analysis Learning

Mutual Complementary

* Lack of knowledge * Data dependence
e Inflexible * Context sensitive
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Motivation

* Example 1. Composite fuselage assembly (aircraft manufacturing)

> The shape control process is subject to:
(1) intrinsic uncertainty; (1) material complexity; and (1) failure risks
» Conventional control theory is suboptimal and time-consuming (trial-and-error)

Fig 1. Subsections of Boeing 787. (from Tangel and J. R Brinson,“What’s holding back Boeing’s Fig 2. Shape control process
787 Dreamliner?”WSJ, June 26 2022)
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Motivation

* Example 2: Multiphysics material analysis
> Response 1s extremely complex to interpret existing physics
> Uncertainty quantification is intractable with physics
» Conventional design of experiment (DoE) is inefficient
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Fig 3. Tribocorrosion analysis for Al alloys (from Wang et al. "Multiphysics modeling and uncertainty quantification of
tribocorrosion in aluminum alloys." Corrosion Sciend&8 (2021): 109095.)
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Research Overview

Physics-informed Machine Learning for System Informatics

Physical : . - :
Characteristics [ Uncertainty Heterogeneity Implicit Constraint ]
Solution Uncertainty Quantification  Divide-and-Conquer Constraint Model
(" NNGP considering Y ( Partitioned Physics-constrained )
Method Input Uncertainty Active Learning Active Learning
y (NNGPIU) )L (PAL) (PhysCAL) )
Usage Modeling Data Acquisition
Applications Simulation, Control, Design Optimization, etc.
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Neural Network GP considering Input Uncertainty

* Motivation: Surrogate modeling of complex system under input uncertainty

Problem Property Desired Model Conventional Approach
Material Property Neural Network Gaussian Process
(NNGP)
= Nonlinear = Pros: Capabi”tYOf UQ
= Anisotropic = High Model Capacity: Deep Structure = Cons: Shallow Structure
Process Property = Uncertainty Quantification (UQ) Deep Neural Networks
= Heterogeneous Parts = Limitation: = Pros: High Expressivity
= Input Uncertainty How to consider Input Uncertainty? = Cons: Intractable UQ

* Neural network Gaussian process (NNGP)

> Gaussian process (GP) mduced from infinite-width random deep neural networks

> Nonstationary GP with deep architecture using composite kernels
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Neural Network GP considering Input Uncertainty

* Method details

Problem Formulation

@z(x +E]J + x€EQ

= MC Approximation for Kernel (m: # Input Noise (u) Samples; u ~ U)

Actual Target Function Input Noise Observation Noise
Observation ~ NNGP(u" kt)  ~ ’Hl.r\ﬂ. o ~ N(0,6%)
NNGP NNGPIU (Our Proposal)
kynep(x,x") = Cov[y(x), y(x)] knngriv(x,x') = Covly(x),y(x')] ik (x,x)
xx) =~
= Covlf(x), f(x)] TR = Cov[f(x +w), fX +w)ww] | o
\
Ignore Input Noise = B, [f(x+w)f(x" +u')]

(u,u’' =0)

Expectation over Input Noises

1
mZi,j kL(x +u;, x' + uj), x+x
1
;ZikL(x+ui,x+u,-), x=x'
1
— Yk (x +uyx), x,: New Input

Proposition 1. NNGPIU is a Best Linear Unbiased Predictor (BLUP) of f(x.), which is subject to input noise, where x, is an unobserved input.
. -1
arg m},;n”f(xnew) ~B"yII* = kyngpry(x, X) [KifNGPIU (X, X) + o¢ I] -
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Neural Network GP considering Input Uncertainty

* Application to composite fuselage shape control

Deformation Residual Stress
oos| 8 : ; - |
0.01 —l._ T u —l— —l._ 23: u
0ol T — — — — 13 — — = — ——
Mode/ Linear Shallow GP NNGP KALE NNGPIU
MAE K 10‘3in) 9.37 942 10.84 9.29 9.35

MAE (psi) 18.143 13.668 13.619 13.742 11.884
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Partitioned Active Learning

* Motivation: Optimal design for heterogeneous systems

Update - Refer Fig 4. Corrosive Rates of Al Alloys
Model (f € T) i 5.0E-13 ,
Labeled Data Unlabeled Data ’E“E'wb
XL, y) Xy € Q) §4.0E-13 i /
¥ y Maximum Entropy *g
Oracle (f) i Variance Reduction Sty
Label Info. Measure . O
JiXy X F —» R Query-by-committee “é,a’OE 131
Applications Expected Model Change %‘ 2.5E-13 -
X .
. Etc. © 20813+
Pattern Inverse/Optimal 3 _
Recognition Design < 15E-13 1
1.0E-13 4
Surrogate 250 255 260 265 270 275 280 285 290
Modeling Anodic Tafel Slope (mV)
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Partitioned Active Learning

* Method details

Initial Design (Space-Filling) Heterogeneity-based Partitioning
\ » Compute heterogeneous feature for (X, y):
2 . N
Partition Design Space h(x) = avg( i.y) ;x; €N (x)) or Var(yl,xl eN (x))
X = Um 1Xm X)
| s Finite difference Variance
‘
Fit GP on Each Subregions * Implement mean-shift for (X, h) = (X, h,m)
GPm ~ No (e, K | X € X)) * Train SYC on (X, m)
\ I y
f Y
Partitioned Active Learning (PAL) Consequently, Partitioned Active Learning (PAL) achieves:
P-IMSE(X,,.1 € X,,) = J' &2, (dx + Z f o2 (x)dx i) Reduction of Numerical Cost in Optimal Location Search
Xm ’ izm . .
| Local Search Global Searching - Matrix Inversion: U(Ng) = zmo(nygn), o =N
( \( \ - # Candidates: Card(X 4n,q4) — Pr(x € X,,;+)Card(X .gna)
Global Searching || m =arg max,, f - Tma (D)X * Assuming X qnq uniformly spread out in X
\ g\ J
[ AYS , h ii) More Accurate Search via Localized GPs
Local Searchii x' =arg min f Ons1(X)dx .
{ i JL St X Jy T ) For each region (m € {1, ..., M}), x € X,,,,
* Iterate until the “Budget” is consumed or “Desired- o2 x) = k() — kI (x. X K1 k. (x X _
Accuracy” is achieved m, "m( ) m( ) m( ! nm) mn;, m( L ﬂm)
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Partitioned Active Learning

e 2-D simulation result

Ground Truth Homogeneous IMSE PAL (Proposed)
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Fig 5. Comparison between ALC and PAL-i @mulation
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Partitioned Active Learning

* Case study results

Case Input Dims Output Dims
Residual stress in shape control 10 I
Tribocorrosion rates of Al alloys 6 I
Inverse dynamics of robotic arm 21 7
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Physicsconstrained Active Learning

* Motivation: avoid system failures in physicenstrained systems

* Underestimating implicit constraints in active learning may induce:
> Fatal system failures
> Incompliant models

Compliant solution Incompliant solution 2
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4 & 176
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—0.4 —0.2 0.0 0.2 0.4 —0.4 —0.2 0.0 02 0.4
t t
Fig 6. Composite fuselage shape control inducing material failures Fig 7. Data-driven solutions ofthe

Korteweg-de Wries (KdV)-Burgers equation
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Physicsconstrained Active Learning

* Method overview

i System / Oracle )
(e.g., Finite-element Analysis, Real Experiment)
ma
Target Function Physics Constraints
f:Q-R h(x) <& x€e
N J
Train
r N
Surrogate Model
Query Predictive Model Constraint Model
x f)~GP(uf (x),07 (x)?) h()~GP(u"(x), 0" (x)?)
\ | J
- Information Measure -
' - v A | =
I. Safe Variance Reduction | | Il. Safe Region Expansion
JsvriQl > Ry Jsrei Q2 = Ry

Ill. Physics-constrained Active Learning

* SYSTEMS
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The system consists of two functions
Assume functions are bounded in RKHS

Maintain two surrogate GPs
Surrogate models are utilized for info. measure

Reduce model variance over the safe region
Expand the explorable safe region
Integrate two tasks




Physicsconstrained Active Learning

* Method detalls

-
l. Safe Variance Reduction (SVR)
* Consider two-level safe regions with the constraint model as

S (ST ={x|Pr(h(x) <§) <1-y (y")} with Sc §*
* Choose x € S that reduces the model variance over S* the most

Jorr(x € S) = J Var (f(s)) da(s) — | Var(F(slx))da(s)
\ s St y
* Note: S: safe region, S*: progressive safe region, A: measure on ()

lll. Harmonizing Acquisition Functions

* Preference parameter (w): adjust balance between two criteria

* Multi-objective optimization formulation with Pareto optimality
X' = argimax (1 —w) Jsyr(x) + wsgp(x),w € [0,1]

i SYSTEMS
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(II. Safe Region Expansion (SRE)

* Choose the most informative data to expand the explorable region
* Incorporate uncertainty and closeness to the safe boundary

£
Jsre(x € 5) = @) — "G —m) — | (h=£P@"@)dh
5 Uncertainty *1 Closeness )
* Note: n = ao(x) (a > 0), oh(), ¢": CDF, PDF of h(")

~

IV. Theoretical Properties

* Proposition 1. (Failure Probability) For N-sampling, the failure-
averse active learning has the probability of failure { = Ny.

* Proposition 2. (Asymptotic Convergence) As n — o, the
acquisition function and S converge to zero and a subset of the
true safe region.




Physicsconstrained Active Learning

* Application to composite fuselage shape control
> Target function: fuselage deformation (10 actuators)
> Constraint: composite material failure criterion (‘Isai-Wu criterion)

Tsai-Wu criterion

2 1 1 Jl T12 0107 1
Z, T |t T e\ ) T T ¢ 1.c= s
i=1\O 0; 0; 0 112 01 0, 0, 0y Y~ MS (Margin of safety)=1.25

i i i

> 20 mnitial samples + 20 samples with AL (10 replications)
> Result

Random Max Entropy IMSE SEGP Proposed Method
MAE # Fail MAE # Fail MAE # Fail MAE # Fail MAE # Fail

Mean | 5.383 0.4 2.244 4.1 2.046 3.8 2.297 1.0 2.832 0.1
(Std/um) | (2.345) | (0.5) | (0.470) | (0.3) | (0.441) | (0.6) | (0.305) | (0.8) | (0.518) | (0.3)

Methods




Summary and Conclusion

Topic Challenges Contributions Further Applications

NNGP

Low expressivityP) Modeling of complex systems

Developed dataefficient and highly )

Considering » DatainefficienifDNN) : : with limited data
. expressive model that considers . e
Input « Cannot addresgnput inout uncertaint Systems subject to intrinsic
Uncertainty uncertainty(NNGP) P y input uncertainty
* Incorporate the region classifier to : :
Improve the validity of data HUIPYEIES SYEEmE
Partitioned » Hindered learning by , - » Geostatisticshuman health
. . . Importance . :
Active Learning systemheterogeneity , , _— : subject to ecologic
» Hierarchical acquisition function .
o . heterogeneity
with improved computational cost
Physics » /mplicit constraints | D.e vg/op ’."f"'”" ofacqwsn‘/on funclions Solving PDE problems
. : : with implicit constraints e . ,
constrained associated with system e L. » Optimizing control policy with
. . . Utilizing multi-objective ST :
Active Learning failure implicit constraints

optimization for the flexibility of AL
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