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I. Neural Network Gaussian Process considering Input Uncertainty
(NNGPIU) [1]

- High expressivity: To accommodate the complex nature of
composite materials, we employ the neural network Gaussian
process (NNGP) as the underlying function.

- Input Uncertainty: Consider input uncertainty by adjusting the
kernel of NNGP with respect to noise.

kyncpiu(x, x') = Cov]y(x),y(x')]
= Ey [f(x+w)f(x" +u’)]
Table. Composite fuselage deformation prediction result
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ll. Partitioned Active Learning (PAL) [2]
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MOTIVATION

Boemg 787 Dreamliner is one ofthe most successful commercial
aircraft, which 1s benefitted from the innovative composite structures.
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However, the manufacturer has experience frequent delivery halt due " fterato until th “Budgot” is consumed or “Desired- : f o :
Accuracy” is achieved Flg I_eammg curves on ﬁlselage defomlatlon

to quality defects associated with gaps between fuselage sections.

lll. Physicsconstrained Active Learning (PhysCAL) [3]

It compels manufacturers to conduct shape adjustment for assembly

and maintenance, while the process is challenging because ofthe ! System / Oracle )
fO HOWiIlgS: N (e.g., Finite-element Analysis, Real Experiment) « The system consists of two functions
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[I. Safe Variance Reduction] [ Il. Safe Region Expansion ] » Reduce model variance over the safe region
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. : Table. Result on learning fuselage deformation subject to material failures

FUTURE RESEARCH

The proposed methods are not limited to composite structures

N

wing-to-body : . . . .
[Jchina  faiing assembly, assgmbly, bu_t applicable to other domains (e.g., biostatistics, material
- rudder, landing gear doors : design, robotics [2]). Our group has done also other research on model
italy vertical fin 4 South : . s . . . . L
fiitleections: leadingadge: 22 nastrali o calibration, digital twin, and Bayesian optimization for etal-end

quality control for complex manufacturing systems.
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