

TOWARDS THE USE OF DEEP LEARNING NEURAL NETWORKS FOR SYSTEM VALIDATION TESTING OF TIGHTLY COUPLED COMPLEX SYSTEMS

Approved for public release. Distribution is unlimited. LANCE SHERRY AND TEAM LSHERRY@GMU.EDU

ACKNOWLEDGEMENTS:

ACQUISITION INNOVATION RESEARCH CENTER

Holistic Assurance Framework: Fast Time Emergent Scenario Simulation (FTESS): potential for using deep learning neural networks for system validation testing

(WRT-1049.8.6)

Sponsors: DOT&E (R. O'Toole, S. Hobson); A&S/AE (D. Cadman)

RESEARCH TEAM — BIO(S)

Ms. Jomanah Bashatah Ph.D. Candidate, System Engineering

• MBSE, Digital-Twin,

- Ms. Amy Rose Ph.D. Candidate System Engineering
- Digital Engineering, Remote sensing validation

Mr. Wyatt Mingus
B.Sc. System Engineering
Machine Learning, Digital Twin

Dr. Ali Raz

Simulation

Assistant Professor, Systems Engineering and Operations Research, College of Engineering and Computing

• MBSE, Digital-Twin

Dr. James Baldo

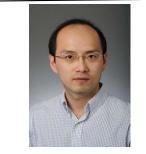
Associate Professor, Director of Master of Science in Data Analytics Engineering Program

 Software Development, Software Testing, Dev Sec Ops

Brett Berlin

Instructor Master of Science in Data Analytics Engineering Program

• Super-Computing, Data Analytics



Dr. Jie Xu Associate Professor with the Department of Systems Engineering & Operations Research (SEOR)

 artificial intelligence (AI)/machine learning, digital twin/computer simulation

Dr. Ran Ji

Assistant Professor with the Department of Systems Engineering & Operations Research (SEOR)

• Distributionally Robust Optimization Stochastic Programming

Dr. John Shortle

Professor and Chair, Systems Engineering and Operations Research

Safety Risk Assessment, Rare-event Simulation, Queueing Theory

PROJECT SUMMARY

• Project Overview

- 1. Analysis of modern accidents/incidents showed that no component(s) failed!
- 2. Instead, modern accidents/incidents are increasingly the results of the emergent behavior resulting from the interaction of increasingly complex components of systems that are tightly-coupled
- 3. The combinatorics of system component interactions over time makes complete testing of full coverage of the operational state-space, using agent-based simulation/digital-twin models, time and cost prohibitive
- 4. Project evaluated the feasibility of using Deep Learning Neural Networks (DLNN) to generate scenarios beyond those generated by agent-based simulation/digital-twin models (i.e. supplement simulation results)

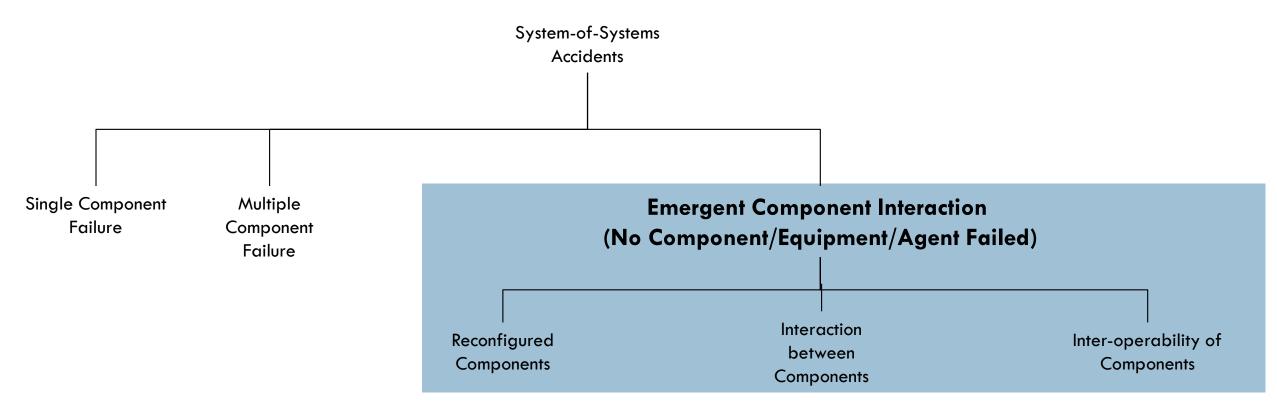
• Key Finding

- Deep Learning Neural Networks (DLNN) can successfully be used to generate scenarios for System Validation Testing beyond the range of scenarios generated by agent-based simulation models (for the class of system tested)
- 2. Success achieved for Hybrid (i.e. logical and continuous behavior) systems with finite and/or repeatable behavior
- 3. DLNN can be used as a "look-up" table for Digital-Twin (i.e. emergent behavior resulting from initial conditions)

BACKGROUND — ACCIDENT CATEGORIES

Not all accidents/mishaps caused by **component failures**

Anatomy of "No-Equipment Failed" Malfunctions (Sherry, Mauro, 2014, 2017a; 2017b, 2018, 2019)



BACKGROUND — COMPONENT INTERACTION ACCIDENTS

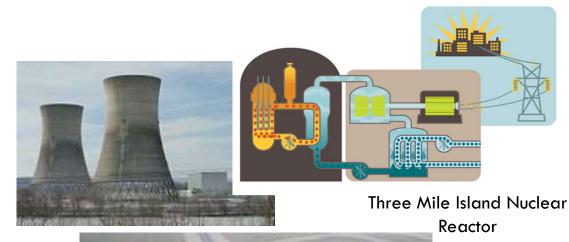
- "Normal Accidents" Perrow (1984)
- Functional Interaction Complexity Failures/Malfunctions (FICFs) (Sherry et. al., 2014 - 20)
- All components work as designed
- No component FAILED
- Component or system migrated into hazardous operating region

"Normal Accident" Criteria:

- 1. The System behavior is complex (moded logic and continuous)
- 2. The System is composed of tightly coupled components
- 3. Interactions occur over time
- 4. The System has catastrophic potential when operating in a hazardous operating regime

"Normal Accident" Scenario

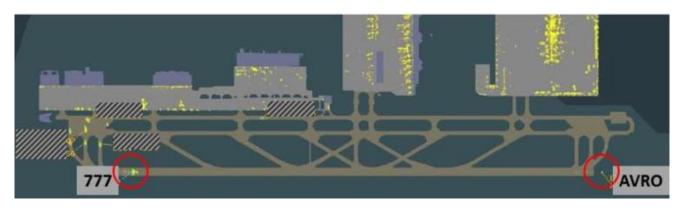
- 1. Start the fire
- 2. Disable the fire extinguisher
- 3. Provide ambiguous cues (that prevent intervention)



Munich Airport Runway Excursion

BACKGROUND: MUNICH AIRPORT RUNWAY EXCURSION

- To accommodate A380, airport moves Localizer antennae away from runway end (changes ILS Critical Area)
- 2. Low Visibility conditions causes long departure queue
- 3. Air Traffic Controller, trying to expedite departures, clears Avro for mid-runway takeoff
- 4. Air Traffic Controller clears SQ237 for approach
- 5. 777 decides to "practice" CAT III automatic landing
- 6. Avro takeoff roll to end of runway and lift-off
- 7. Localizer signal is deflected (due to Avro)
- 8. 777 Automatic Landing System follows deflected Localizer signal and lands adjacent the runway
- 9. 777 weight-on-wheels inhibits Go Around button selection by flight-crew to intervene

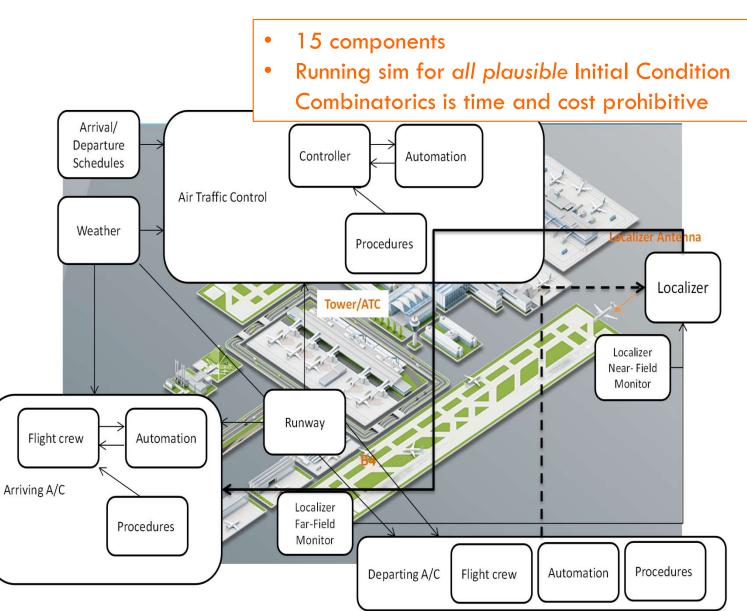


Failure of (designers) imagination to prevent?

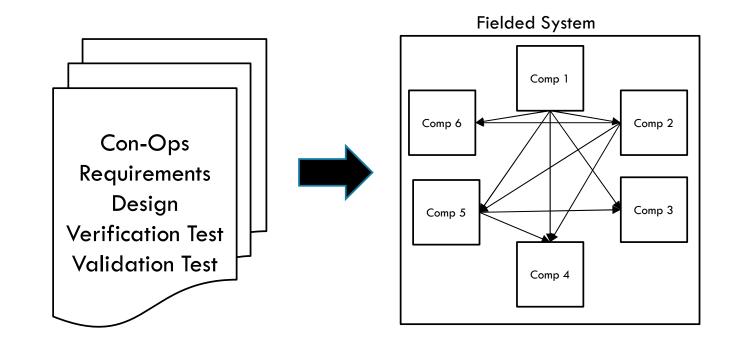
BACKGROUND: MUNICH AIRPORT RUNWAY EXCURSION SIMULATION MODEL

System Components:

- 1. Air Traffic Control
 - 1. Procedures
 - 2. Automation
 - 3. Controller
- 2. Departing Aircraft
 - 1. Procedures
 - 2. Automation
 - 3. Flight crew
- 3. Arriving Aircraft
 - 1. Procedures
 - 2. Automation
 - 3. Flight crew
- 4. Airport Arrival/Departure Schedule
- 5. Weather
- 6. Runway
- 7. Localizer
 - 1. Localizer Near-field Monitor
 - 2. Localizer Far-field Monitor

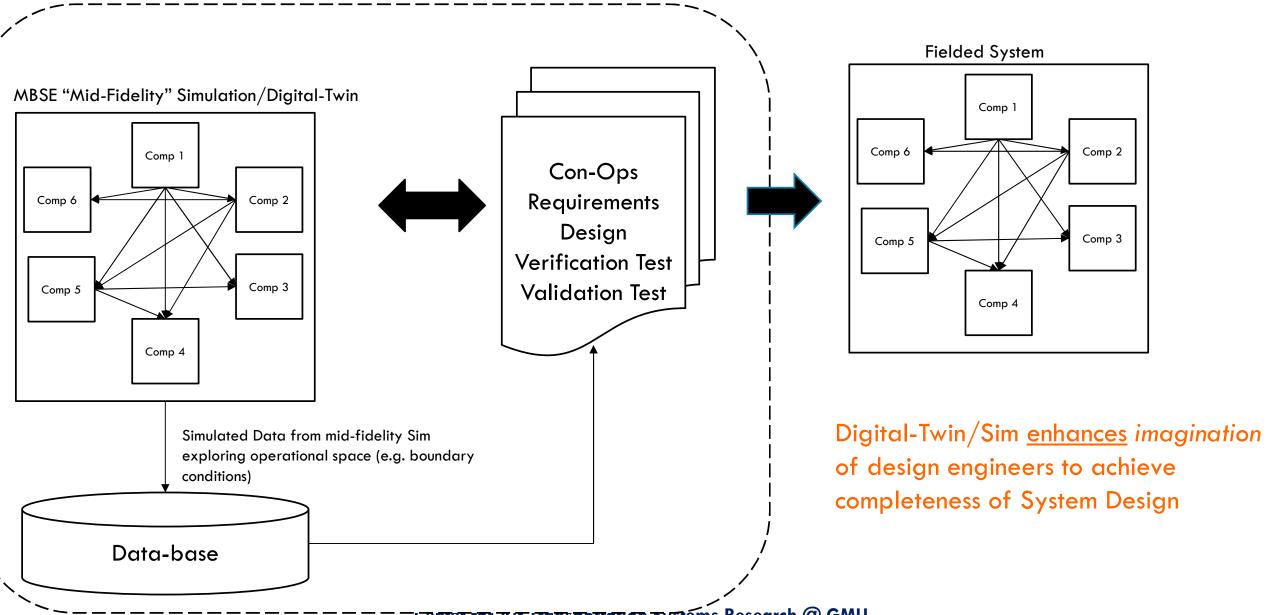


TRADITIONAL SYSTEM DEVELOPMENT

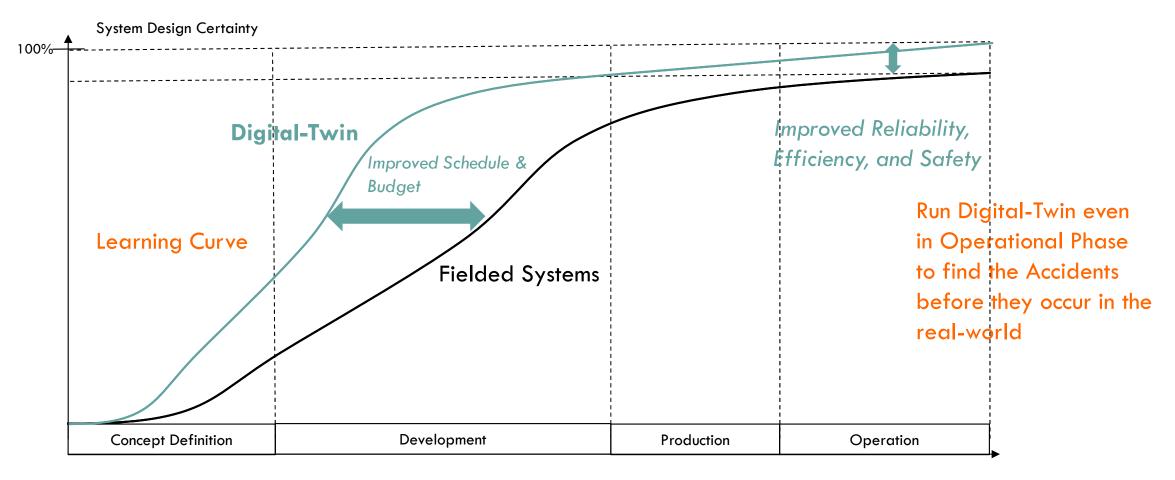


Completeness of System Design is dependent on *imagination* of design engineers

TRADITIONAL MODEL-BASED/DIGITAL-TWIN SYSTEM DEVELOPMENT



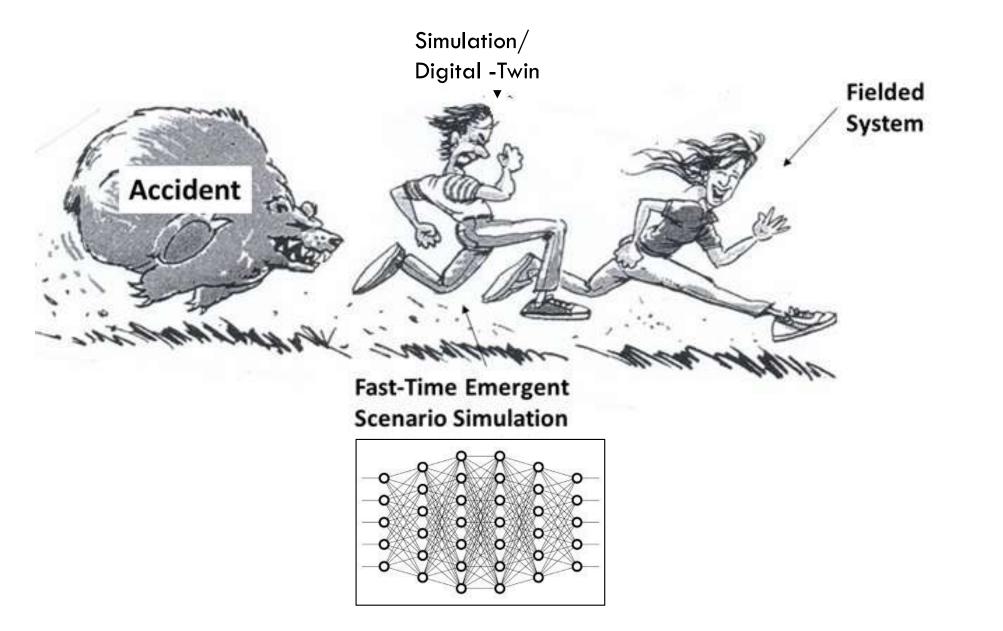
DEVELOPMENT LIFE-CYCLE



Generic Life-cycle Stages

Berlin (2021) Personal Communications

CON-OPS — **POKE THE ACCIDENT BEAR EARLY AND OFTEN**



LIMITATIONS OF SIMULATION

- Combinatoric Explosion
 - Component Initial States
 - Time-dependence
- Running Simulation to end state is time and cost prohibitive

• <u>Can we use DLNN to speed-up/reduce cost of System Validation</u> <u>Testing</u>?

- Continuously uncovering emergent rare-events without simulation cost/time
- Increase operational Initial State Coverage

CON-OPS: USING DLNNS FOR SYSTEM VALIDATION TESTING

Step 1: Collect System X behavior data for all $x_{i,j}(t)$ for as many scenarios as possible

 \circ Data from operations and/or simulation

• Note: By definition this data set is *subset* of *all* possible Initial/Terminal Condition pairs

Step 2: Develop (i.e. train/test) DLNN using available Initial/Terminal Condition pairs data set

Step 3: Calculate "confidence interval" for DLNN to correctly predict Initial/Terminal Condition pairs not in development data set

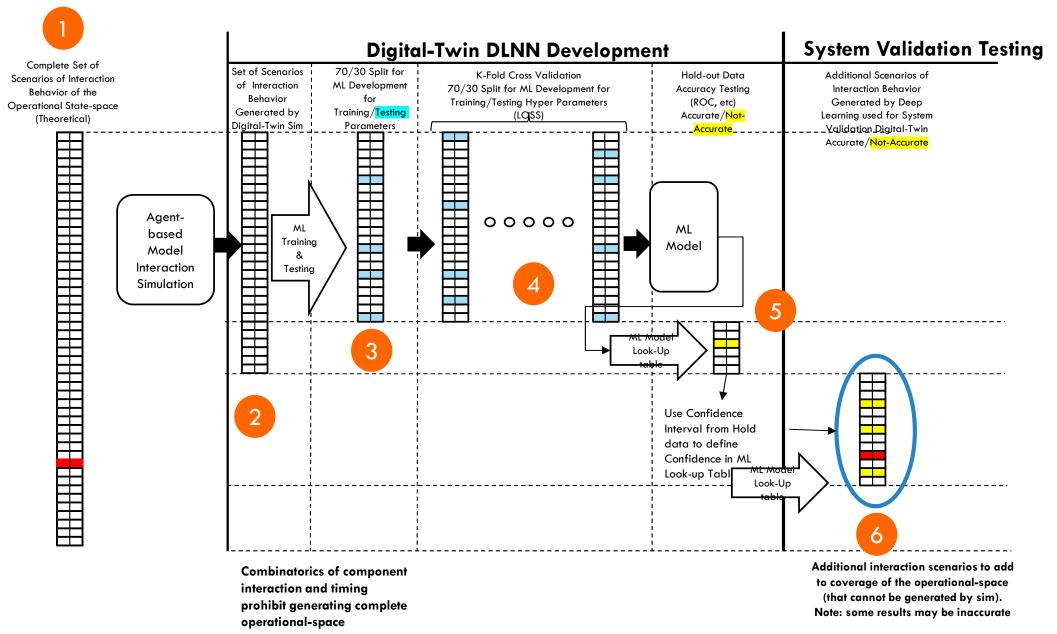
Step 4: Use DLNN as a "look-up table" to test all possible Initial/Terminal Condition pairs

• Keep testing and get as close to all combinations as possible

Step 5: For Initial/Terminal Condition pairs that are deemed "unsafe" by DLNN check on simulation/analysis

Step 6: Continuously check accuracy of DLNN using live operational data and re-train when no longer "calibrated"

CON-OPS: USING DLNNS FOR SYSTEM VALIDATION TESTING



Behavior of Component is hybrid:

- Moded (dependent on logic)
- Continuous dynamics
 - i.e. depending on the mode, a different continuous behavior occurs

Vessel filled with a gas part of Refinery process

Component States

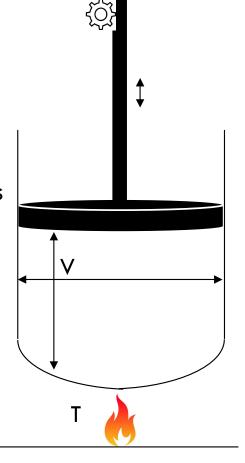
- Temperature
- Volume

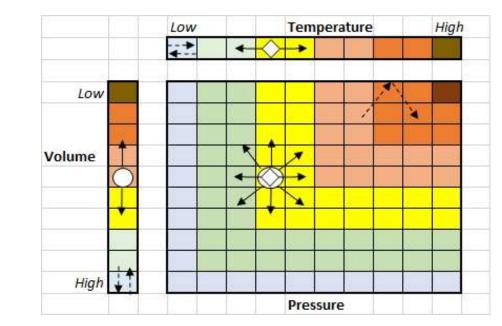
Emergent State:

Pressure

Hazard:

Pressure in excess of vessel material strength



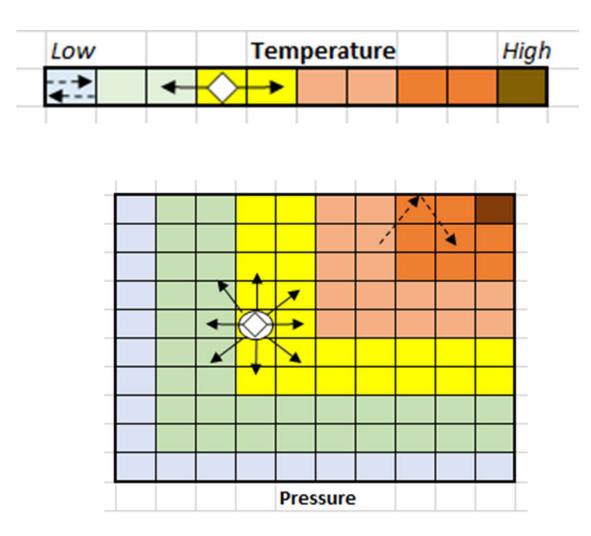


P = nRT/V

CASE STUDY: DLNN FOR SYSTEM VALIDATION TESTING

1 x 10

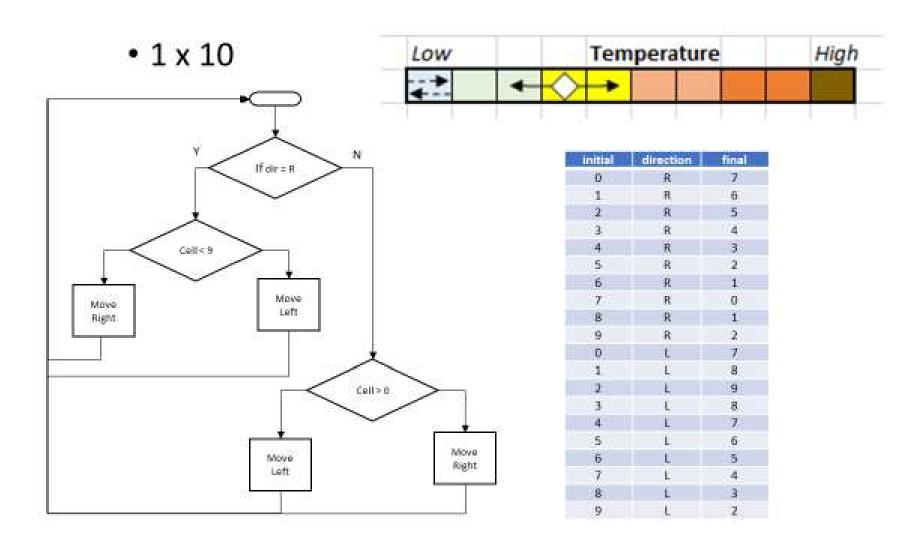
10 x 10



Note: Behavior is hybrid Discrete Logic/Continuous

"Bounce" represents Discrete Logic Movement represents continuous

Case Study: 1 x 10



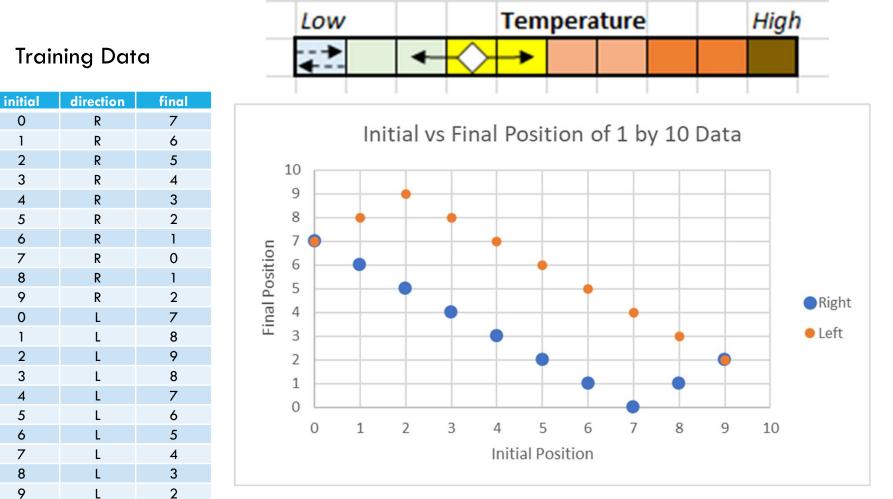
Note: Behavior is hybrid Discrete Logic/Continuous

"Bounce" represents Discrete Logic Movement represents continuous

8

CASE STUDY: 1 X 10

1 x 10



Note: Behavior is hybrid Discrete Logic/Continuous

"Bounce" represents Discrete Logic Movement represents continuous

import pandas as pd import tensorflow as tf import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split sc = StandardScaler() import statistics DLNN created with TensorFlow and Keras libraries

Scikit-learn, pandas, and numpy used for data processing

Statistics package used for data analysis

Initial and direction columns used as input values (X)

Final position column used as output values (Y)

Train/Test follows 70/30 split

He_uniform initializer

```
Rectified Linear Unit (relu) activation
```

Scikit-learn StandardScaler.transform function

######assigning train and test #####
<pre>(_train, X_test_un, Y_train, Y_test = train_test_split(X, Y, random_state=42, test_size=tsiz) #, stratify=Y)</pre>
(_test_dup = X_test_un
(_train = sc.fit_transform(X_train)
<pre>(_test = sc.transform(X_test_un)</pre>
<pre>(_full_test = sc.transform(X_full_test_un)</pre>
<pre>#print(Y_test.shape[0],Y_train.shape[0])</pre>

##BUILD THE MODEL###

ann = tf.keras.models.Sequential()
<pre>ann.add(tf.keras.layers.Dense(den, input_dim= 2, kernel_initializer='he_uniform', activation='relu')) #1</pre>
<pre>ann.add(tf.keras.layers.Dense(den, input_dim= 2, kernel_initializer='he_uniform', activation='relu')) #2</pre>
<pre>ann.add(tf.keras.layers.Dense(den, input_dim= 2, kernel_initializer='he_uniform', activation='relu')) #3</pre>
<pre>#ann.add(tf.keras.layers.Dense(den, input_dim= 2, kernel_initializer='he_uniform', activation='relu')) #4</pre>
<pre>#ann.add(tf.keras.layers.Dense(den, input_dim= 2, kernel_initializer='he_uniform', activation='relu')) #5</pre>
<pre>#ann.add(tf.keras.layers.Dense(den, input_dim= 2, kernel_initializer='he_uniform', activation='relu')) #6</pre>
<pre>#ann.add(tf.keras.layers.Dense(den, input_dim= 2, kernel_initializer='he_uniform', activation='relu')) #7</pre>
<pre>#ann.add(tf.keras.layers.Dense(den, input_dim= 2, kernel_initializer='he_uniform', activation='relu')) #8</pre>
<pre>#ann.add(tf.keras.layers.Dense(den, input_dim= 2, kernel_initializer='he_uniform', activation='relu')) #9</pre>
<pre>#ann.add(tf.keras.layers.Dense(den, input_dim= 2, kernel_initializer='he_uniform', activation='relu')) #10</pre>
ann.add(tf.keras.layers.Dense(1))
ann.compile(optimizer="adam", loss='mae', metrics=['accuracy'])

###TRAIN AND RUN THE MODEL###

ann.fit(X_train, Y_train, epochs=epo, verbose=0)
test_loss, test_accuracy = ann.evaluate(X_test, Y_test)
print("test loss, test accuracy",test_loss,test_accuracy)
Y_pred = ann.predict(X_test)
Y_full_pred = ann.predict(X_full_test)

21

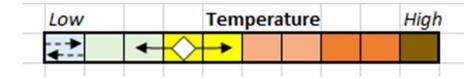
Values of predicted and expected output compared to determine true accuracy

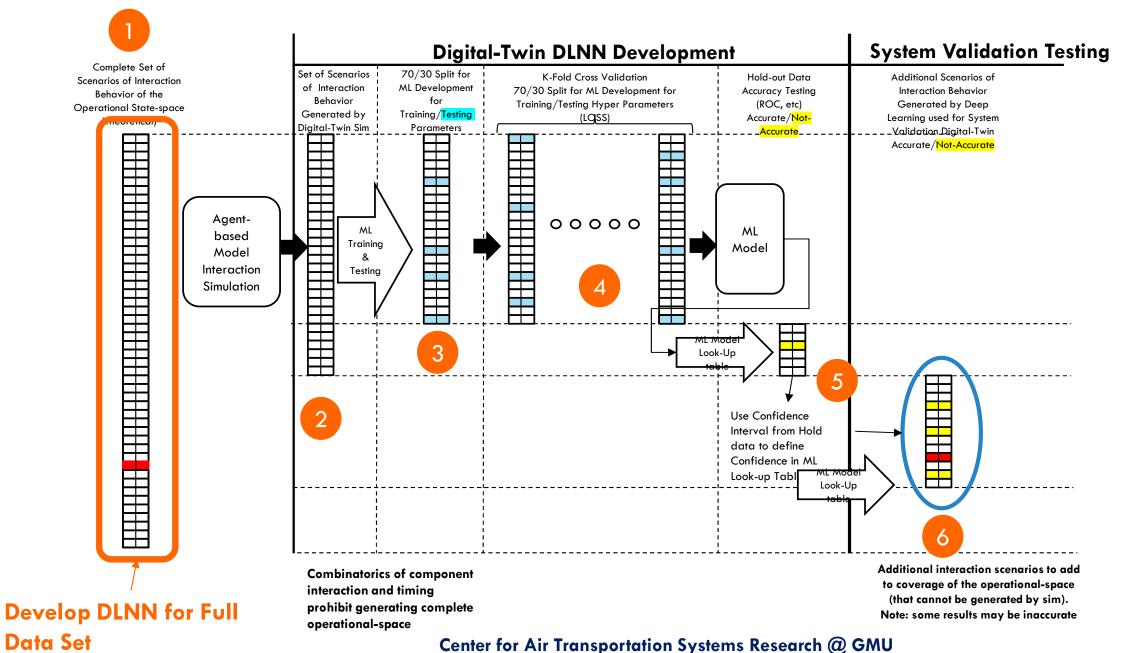
Accuracy values then stored for all runs in a .csv file to be analyzed later Y_test = pd.DataFrame(Y_test)
Y_full_test = pd.DataFrame(Y_full_test)
pred_test_df = pd.concat([Y_pred, Y_test],axis=1)
pred_test_df.columns=['Y_pred','Y_test']

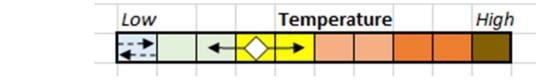
###Calculationg Accuracy###

pred_test_df['correct_prediction'] = np.where(pred_test_df.iloc[:,0] == pred_test_df.iloc[:,1], 1, 0)
pred_full_df['correct_prediction'] = np.where(pred_full_df.iloc[:,0] == pred_full_df.iloc[:,1], 1, 0)
accuracy_hiddenset = pred_test_df['correct_prediction'].sum()/len(pred_test_df['correct_prediction'])
accuracy_fullset = pred_full_df['correct_prediction'].sum()/len(pred_full_df['correct_prediction'])
print('test Accuracy: %f',accuracy_hiddenset, accuracy_fullset) #, acc_val)

DEVELOP DLNN FOR 1 X 10

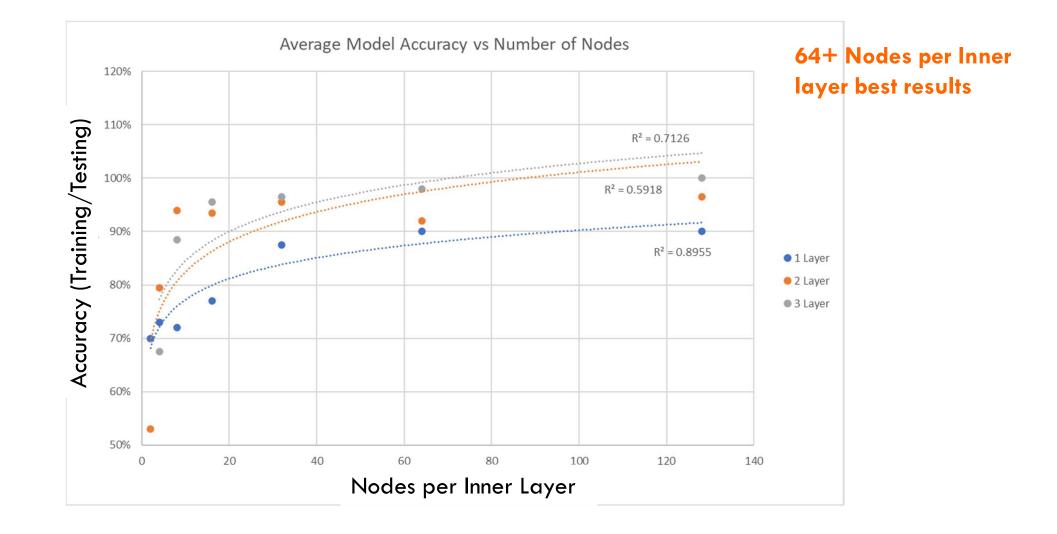




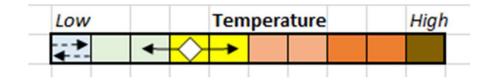


24

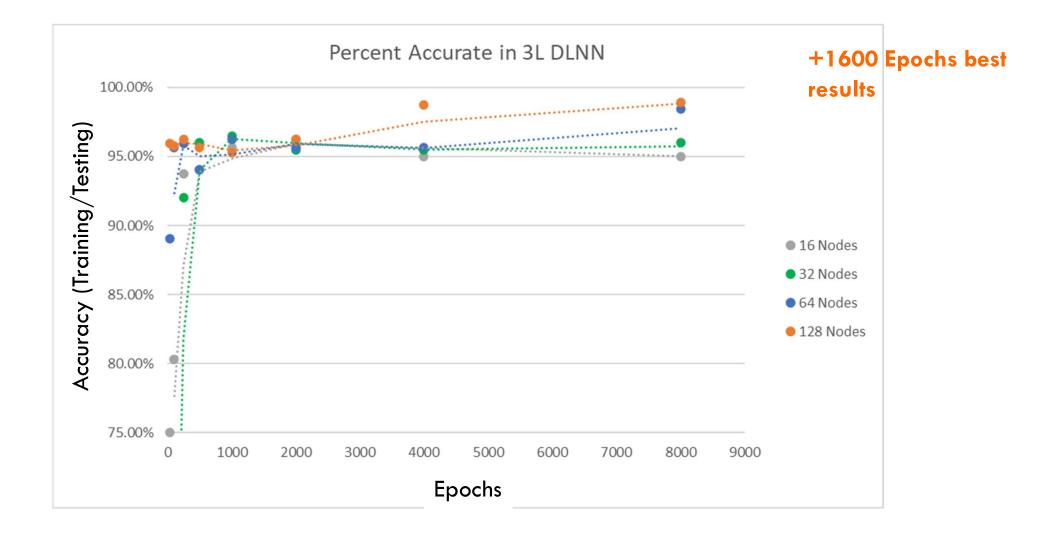
1 X 10: DLNN CONFIGURATION PERFORMANCE



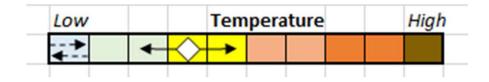
1 X 10: DLNN CONFIGURATION PERFORMANCE



25



BASELINE: FULL DATA SET



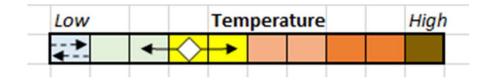
Optimal model: 64 Nodes, 3 Layers, 16000 Epochs

• Marginal gains with 128N, 3L, 4000E, more consistent

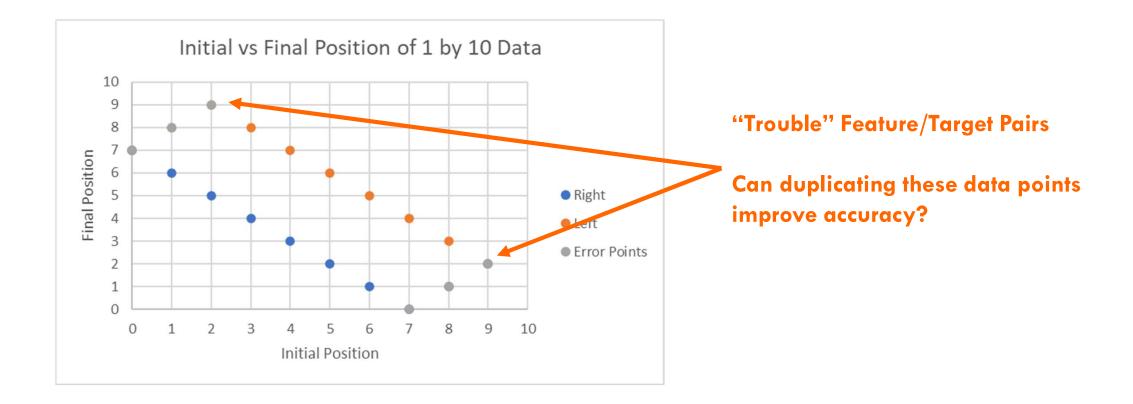
Build 100 DLNNs (3L6N16000E) with Full Data Set (i.e. 20 target/feature pairs, no duplicates)

71 out of the 100 achieved a 100% Training/Testing Accuracy

Scenario		DLNN Training/Testing Accuracy						
3L64N16000E	Data for Training	Average	Median	Min	Max	Std. Dev	Count 100	%
Full	20	98%	100%	90%	100%	2.53%	7	71



Optimal model: 64 Nodes, 3 Layers, 16000 Epochs



27

28

Optimal model: 64 Nodes, 3 Layers, 16000 Epochs

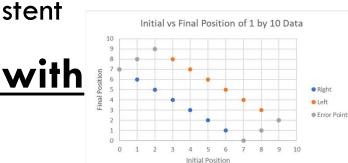
1 X 10 EXPERIMENT

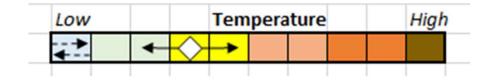
• Minimal difference between that and 128N, 3L, 4000E, more consistent

Build 100 DLNNs (3L6N16000E) with Full Data Set with Duplicates for the "trouble" Feature/Target Pairs

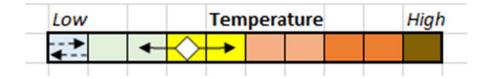
100 out of the 100 achieved a 100% Training/Testing Accuracy

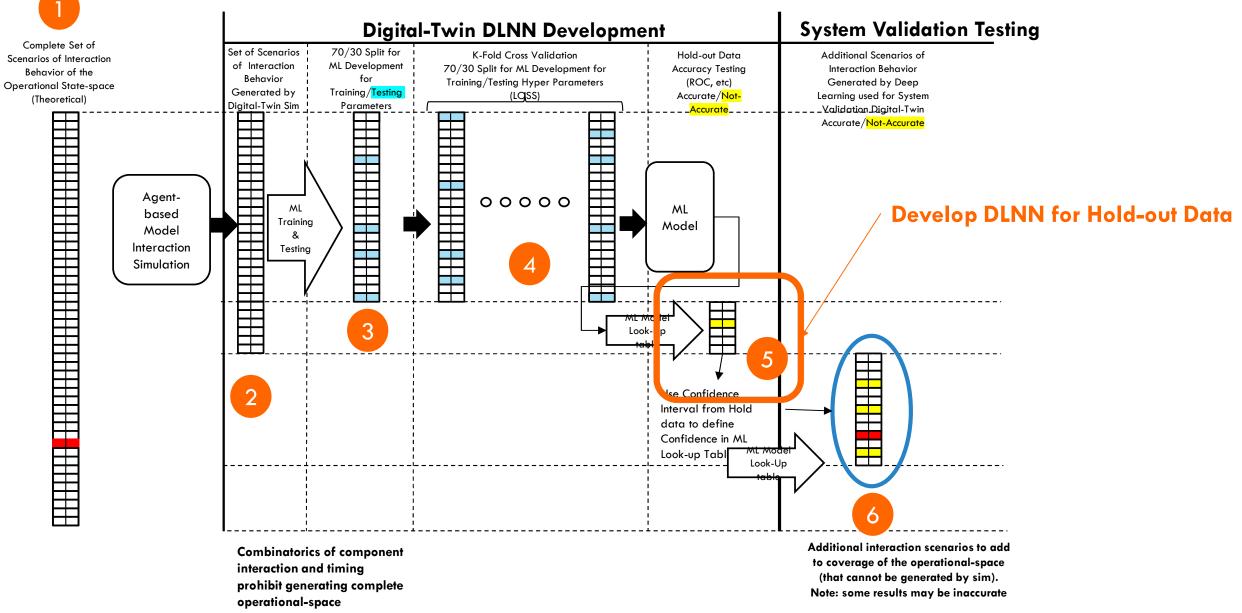
Scenario		DLNN Training/Testing Accuracy					
3L64N16000E	Data for Training	Average	Median	Min	Max	Std. Dev	Count 100%
Full	20	98%	100%	90%	100%	2.53%	100



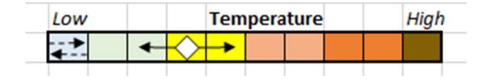


1 X 10 EXPERIMENT





1 X 10 EXPERIMENT



1 X 10 System: 3 Inner Layers, 64 Nodes, 4000 Epochs

Experiment Scenario	Data Set	# DLNNS out of 100 with 100% Accuracy	# Feature/Targets Pairs Correctly Predicted out of 20 Using 100% Accurate DLNN
Baseline	Full Data (20)	71	20/20 (100%)
	Full Data with Duplicates for "Trouble" pairs (28)	100	20/20 (100%)
Hold-out	Full Data minus Hold Out (19)		16/20 (80%)
	Full Data with Duplicated for "Trouble Pairs" minus Hold Out (19)		19/20 (95%)

10 X 10 EXPERIMENT

	1			
_	'		•	
	_			
Pres	Pressure	Pressure	Pressure	Pressure

<u>10 X 10 System: 3 Inner Layers, 128 Nodes, 16000 Epochs</u>

Experiment Scenario	Data Set	# DLNNS out of 100 with 100% Accuracy	# Feature/Targets Pairs Correctly Predicted out of 800 Using 100% Accurate DLNN
Baseline	Full Data (800)	52	800/800 (100%)
	Full Data with Duplicates for "Trouble" pairs (880)	~100	800/800 (100%)
Hold-out	Full Data minus Hold Out (800)		~640/800 (80%)
	Full Data with Duplicated for "Trouble Pairs" minus Hold Out (880)		~760/800 (95%) 🛩

TOWARDS THE USE OF DEEP LEARNING NEURAL NETWORKS FOR SYSTEM VALIDATION TESTING OF TIGHTLY COUPLED COMPLEX SYSTEMS

DLNN for System Validation

- It works!
 - At least for some tightly-coupled systems
- Expands operational Initial Conditions Coverage
 - Includes both Initial Condition Combinatorics and Time Dependence Combinatorics
- DLNN Operates as "Look-up Table"
 - No processing time
- Lessons Learned
 - DLNNs can "learn" underlying behavior of system
 - Not every DLNN will have 100% accuracy
 - Find one or more that do have 100% accuracy
 - Accuracy can be improved by duplicating "trouble" scenarios (with unusual behaviors)
 - Use "ensemble approach" by using multiple DLNNs

Future Work

- What classes of systems will it work for?
 - Scale for complexity
- How to calculate the "Confidence Region" for the Hold Out Data?
 - Wasserstein Distance?
- User Manual so (even) System Engineers can develop DLNN

