

A Framework for Certification of Continuous Learning Systems

21 September 2022

Presented to: AI4SE & SE4A Workshop

Presented by: Ryan O'Shea

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Motivation

- Robotics and Intelligent Systems Engineering Lab (RISE) leverages machine learning to solve difficult problems
- Continual learning (CL) allows systems to adapt to real world conditions, but removes elements of control over the system's actions

Background

NAVAIR

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Objective & Need

Objective: Produce a prototype capable of evaluating and monitoring a continuously learning system to enable acquisition of lifelong learning artificial intelligence.

- Develop new methods to certify, monitor, and control continual learning systems focusing on current R&D products with possibility to transition
- Enable the safe transition of continual learning systems through advancing T&E techniques
- Create a set of validating experiments to support prototype evaluation process
- Produce a prototype capable of evaluating and monitoring a continuously learning system to enable acquisition of lifelong learning artificial intelligence

A continual learning system over three points in time showing underlying distribution and decision boundaries changing

Framework Overview

NAVAIR

The Dataset

- Synthetic rotated numbers for digits 0-9
 - 28x28 grayscale images
- Used rotation of the image to simulate a change in the domain of the data
- Generated for a specific range of angles
 - i.e., 0-20, 30-90, 80-120
- All classes generated with equal representation but angle was randomly selected from the range

- Simple convolutional neural network (CNN) classifier
- Trained to be an expert for a specific domain (angle range)
- Different experts for different angle ranges to maintain performance
 - i.e, expert 1 trained to classify numbers rotated between 0 and 40 degrees while expert 2 was trained to classify numbers rotated between 40 and 70 degrees

Expert AI Metrics

- Confidence
 - Top two SoftMax difference
 - Entropy
 - Variation ratio
- Competence
 - Training data K Nearest Neighbor
 - Using Earth Mover's Distance as distance metric
 - 0 or 1 depending on whether a neighbor can be found withing a threshold distance
 - Domain shift monitor domain competence
 - How similar is incoming data to what the expert was trained on

- Each expert AI has an associated DSM trained on the exact same data
- Autoencoder trained to reconstruct input data
- High reconstruction loss corresponds to an image being "out of domain"
- Provides a measure of domain competence for a given expert AI

Domain Shift Monitor (DSM)

Reconstruction Loss for Model Trained on 0-50 Degrees Rotation

Manager Al

- Passes incoming data to each expert AI and selects the best output
 - Expert AI returns an answer and a vector of confidences and competences
- Selects best answer provided by the experts
- If returned confidence and competence metrics are all poor, then the data is stored later for retraining
- Feed forward neural network trained to choose the most trustworthy expert

Real Time Monitor

- Continuously monitors overall system performance and collects outliers from the manager
- Collects confidently classified data and uses it to replace existing training data
 - Allows the dataset to shift over time while still maintaining some of its originality
 - Level of replacement determined by an experimentally tuned adaptability variable
- Raises a warning and kills the system if performance degrades to a point that cannot be recovered from

Retrainer

- Selects data for retraining and selects AI for retraining and/or dataset for replacement
- Active and non-active components
- Outliers are stored in a Hashmap for clustering
- When enough outliers have been collected, they are used to retrain expert AI's

NAVAIR

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Accuracy and confidence Graph with Replacer and Retrainer

Future Work

- More complex datasets and tasks
 - Will the framework scale to more complex images?
 - Can the framework be transitioned to non-classification tasks?
 - Will the framework work well with distorted images?
- Immediate use case: Panoramic Asset Tracking of Real-time Information for the Ouija Tabletop (PATRIOT)
 - Complex and dynamic environment
 - Varying lighting and weather conditions
 - More complex task
 - Pose estimation

If you have any questions, please reach out to my lab at riselab@us.navy.mil