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Fig. 4. Examples of erroneous behaviour on deep learning models. Top Row [18]: In a medical diagnosis system, a ‘‘Benign’’ tumour is misclassified as ‘‘Malignant’’
after adding a small amount of human-imperceptible perturbations; Second Row [19]: By just changing one pixel in a ‘‘Green-Light’’ image, a state-of-the-art DNN
misclassifies it as ‘‘Red-Light’’; Bottom Row [20]: In a sentiment analysis task for medical records, with two misspelt words, a well-trained deep learning model
classifies a ‘‘Positive’’ medical record as ‘‘Negative’’.

Example 4. As shown in the second row of Fig. 4, in classification
tasks, by adding a small amount of adversarial perturbation (w.r.t.
Lp-norm distance), the DNNs will misclassify an image of traffic
sign ‘‘red light’’ into ‘‘green light’’ [19,21]. In this case, the human
decision oracle H is approximated by stating that two inputs
within a very small Lp-norm distance are the same.

Example 5. In a DL-enabled end-to-end controller deployed in
autonomous vehicles, by adding some natural transformations
such as ‘‘rain’’, the controller will output an erroneous decision,
‘‘turning left’’, instead of a righteous decision, ‘‘turning right’’ [22].
However, it is clear that, from the human driver’s point of view,
adding ‘‘rain’’ should not change the driving decision of a car.

Example 6. As shown in the bottom row of Fig. 4, for medical
record, some minor misspellings – which happen very often in
the medical records – will lead to significant mis-classification on
the diagnosis result, from ‘‘Positive’’ to ‘‘Negative’’.

As we can see, these unsafe, or erroneous, phenomenon act-
ing on DNNs are essentially caused by the inconsistency of the
decision boundaries from DL models (that are learned from train-
ing datasets) and human oracles. This inevitably raises signifi-
cant concerns on whether DL models can be safely applied in
safety-critical domains.

In the following, we review a few safety properties that have
been studied in the literature.

3.2. Local robustness property

Robustness requires that the decision of a DNN is invariant
against small perturbations. The following definition is adapted
from that of Huang et al. [23].

Definition 8 (Local Robustness). Given a DNN N with its asso-
ciated function f , and an input region ⌘ ✓ [0, 1]s1 , the (un-
targeted) local robustness of f on ⌘ is defined as

Robust(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK ], 8j 2 [1..sK ] : fl(x) � fj(x) (9)

For targeted local robustness of a label j, it is defined as

Robustj(f , ⌘) , 8x 2 ⌘, 9 l 2 [1..sK ] : fl(x) > fj(x) (10)

Intuitively, local robustness states that all inputs in the region
⌘ have the same class label. More specifically, there exists a label
l such that, for all inputs x in region ⌘, and other labels j, the DNN
believes that x is more possible to be in class l than in any class
j. Moreover, targeted local robustness means that a specific label
j cannot be perturbed for all inputs in ⌘; specifically, all inputs x
in ⌘ have a class l 6= j, which the DNN believes is more possible
than the class j. Usually, the region ⌘ is defined with respect to
an input x and a norm Lp, as in Definition 5. If so, it means that
all inputs in ⌘ have the same class as input x. For targeted local
robustness, it is required that none of the inputs in the region ⌘
is classified as a given label j.

In the following, we define a test oracle for the local robust-
ness property. Note that, all existing testing approaches surveyed
relate to local robustness, and therefore we only provide the test
oracle for local robustness.

Definition 9 (Test Oracle of Local Robustness Property). Let D be
a set of correctly-labelled inputs. Given a norm distance Lp and a
real number d, a test case (x1, . . . , xk) 2 T passes the test oracle’s
local robustness property, or oracle for simplicity, if

81  i  k9 x0 2 D : xi 2 ⌘(x0, Lp, d) (11)
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DNN Verification
Question: Given a network N and a property p, does N have p?

p often has the form P ⇒ Q (precondition P, postcondition Q)

Answer: Yes / No
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Invalid: x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 < 0
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Abstraction

Overapproximate computation (e.g., ReLU) using abstract domains

interval (ReluVal), zonotopes (ERAN), polytopes (α, β-CROWN)

Zonotope

Polytope

Polynomial 

Max-plus

Interval

Scale well, but loose precision (producing spurious cex’s)

Newer work: iterative refine abstraction to filter spurious cex’s
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developments in the formal veri�cation of DNNs [13], a topic which
has received considerable attention of late [7, 8, 11, 13, 15, 34].

Verily can be used to establish that speci�ed requirements from
a deep-RL-driven system are satis�ed. This is important, e.g., for
determining at what point a deep-RL-based system is “su�ciently
trained” (similar to acceptance tests for traditional software), and
for ensuring that a system achieves desired service-level objectives.
Importantly, when Verily determines that the system does not sat-
isfy a certain requirement, it provides a concrete scenario (a counter
example) to demonstrate this. These counter examples can be used
to guide changes to the DNN architecture and/or to identify cir-
cumstances in which the deep-RL-generated decisions should be
overridden.

We evaluate Verily on three deep-RL-driven systems: the Pen-
sieve adaptive video streaming scheme [24], the DeepRM scheduler
for cloud resource management [23], and the Custard Internet con-
gestion controller [12]. We formulate natural requirements for each
of these systems and apply Verily to determine whether these are
always satis�ed and, if not, generate counter examples. Our pre-
liminary evaluation results expose several problems in the tested
systems, and suggest that the formal veri�cation approach (and,
more concretely, the Verily tool) can play an important role in the
design and deployment of safer deep-RL-based systems.

2 BACKGROUND
2.1 Deep-RL-Driven Systems
In RL [31], an agent observes, at each discrete time step t 2 0, 1, ...,
a state of its environment st and selects an action at . After selecting
its action, the agent observes a reward rt , representing its loss/gain
from selectingat . The agent’s goal is to choose a policy � , i.e., a map-
ping of states to actions, which maximizes the expected cumulative
discounted return Rt = E

⇥ Õ
t �

t · rt
⇤
, for � 2 ⇥

0, 1
�
. The parameter

� is termed the discount factor. Recent advances in deep RL employ
deep neural networks to approximate the optimal � [26, 29].

RL provides a useful abstraction for sequential decision mak-
ing and, in particular, is applicable also when (i) the agent may
only possess partial information about the current state; and (ii)
the implications of choosing an action may become clear only in
hindsight (“delayed rewards”).

To illustrate the promise of utilizing deep RL for system de-
sign, we brie�y discuss its recent application to HTTP-based video
streaming [24]. To optimize user quality of experience (QoE), video
clients employ adaptive bitrate (ABR) protocols to dynamically
select the bitrates (resolutions) of requested video chunks (say, 4-
second video segments). ABR protocols map local observables such
as the occupancy of the client’s playback bu�er and the download
times of prior video chunks, to choices of bitrates for upcoming
video chunks. Today’s protocols typically rely on “handwired” map-
pings from local observables to selected bitrates, devised by human
experts. In contrast, the deep-RL-driven Pensieve [24] ABR protocol
automatically learns high-performance bitrate selection policies
from empirical data. Pensieve does so by testing the implications of
di�erent bitrate selections for performance, as captured by a reward
function that re�ects QoE goals such as sending at high bitrates
and avoiding client video rebu�ering and jitter in bitrates. A DNN
is employed to map observables to bitrate selections, thus enabling

Figure 1: The neural network veri�cation scheme.

Pensieve to e�ciently learn complex ABR policies. Experimental
and empirical evaluations suggest that Pensieve outperforms the
widely used handcrafted algorithms, even in environments with
di�erent characteristics than those of its training environment.

2.2 Deep Neural Network Veri�cation
Following the rise in popularity of DNNs, the veri�cation commu-
nity has begun addressing the need to verify neural networks [3, 7,
8, 11, 13–15, 18, 18, 34]. Because neural networks are constructed
from a small set of relatively simple arithmetical operations, the
DNN veri�cation problem is decidable (which is often not the case
for veri�cation of manually crafted code). However, although decid-
able, DNN veri�cation is computationally complex (NP-complete)
even in simple cases [13], and scalability is a major hindrance for
veri�cation tools. Despite this, veri�cation technology is rapidly
improving and, as demonstrated by us and by others, existing tools
are already su�cient for tacking real-world problems of interest.

A DNN veri�cation query is comprised of the following: (i) a
neural network N ; (ii) an input property P ; and (iii) an output prop-
erty Q . A veri�cation engine then tries to answer the question “does
there exist an input vector x , such that P(x) holds and Q(N (x)) also
holds?”, where N (x) is the output vector that the neural network
produces for input x . In other words, the veri�cation engine seeks a
particular input x that satis�es the input property P , and is mapped
by the neural network to an output that satis�es the output prop-
erty Q . The veri�cation process has two possible outcomes: (1) an
unsat result, indicating that no such input exists; and (2) a sat result,
accompanied by a concrete input x0 such that P(x0) and Q(N (x0))
hold. See Fig. 1 for an illustration.Q typically expresses the negation
of the desired property, and thus an unsat result indicates that the
property holds, whereas sat indicates a violation that occurs for x0.

An important distinction between veri�cation and other com-
mon approaches for quality assurance, such as testing and simula-
tion, is that a single veri�cation query can provide formal guaran-
tees about the behavior of the system for in�nitely many inputs.
This can help to ensure, e.g., that a DNN operates correctly when
presented with inputs that were not part of its training or validation
sets. In some cases, veri�cation queries can even be used to explain
how certain decisions are reached by the DNN [4].

84

Transform DNN verification into a constraint (satisfiability) problem
To prove N ⇒ p (where p is P ⇒ Q)

▶ check if ¬(N ⇒ (P ⇒ Q)), i.e., N ∧ P ∧ ¬Q is satisfiable
▶ UNSAT: p is a property of N
▶ SAT: p is not a property of N (also give counterexample

inputs satisfiying P but not Q)

Solve the constraint(s)
SMT solvers (Planet, DLV) or customized simplex
MILP (Reluplex, Marabou)-based solvers

Scalability is a HUGE problem
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Complexity and Scalability

Complexity: NP-Complete

Scalability is the main problem

State-of-the-art verification tools: networks with 138M of
parameters, 160K inputs

Real-world networks: 3.5B parameters, 1.2M of inputs

12



NeuralSAT: Our DNN Constraint Solver

Analyze-
ConflictDecide

BCP Backtrack

DNN + 
Property

Boolean 
Abstraction

SAT UNSATDEDUCTION

Use NeuralSAT to prove
N ⇒ (P ⇒ Q)

Call NeuralSAT(N ∧ P ∧ ¬Q)

Return UNSAT or SAT (and
counterexample)

Insight: combines conflict clause learning in SAT solving and
abstraction for scalability
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Example

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

To prove f : x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ⇒ x5 ≤ 0:

NeuralSAT(¬f ) =
NeuralSAT(N ∧ x1 ∈ [−1, 1] ∧ x2 ∈ [−2, 2] ∧ x5 > 0)

NeuralSAT returns UNSAT, indicating f is valid
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Analyze-
ConflictDecide

BCP Backtrack

DNN + 
Property

Boolean 
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Boolean Abstraction
Create 2 boolean variables v3 and v4
to represent activation status of x3, x4

v3 = T means x3 is active,
−x1 − 0.5x2 − 1 > 0

Form two clauses {v3 ∨ v3 ; v4 ∨ v4}

Find boolean values for v3, v4 that
satifies the clauses and their
implications
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Analyze-
ConflictDecide

BCP Backtrack

DNN + 
Property

Boolean 
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 1
Use abstraction to approximate
upperbound x5 ≤ 0.55 (from
x1 ∈ [−1, 1], x2 ∈ [−2, 2])

Deduce x5 > 0 might be feasible

Decide v3 = F (randomly)

new constraint −x1 − 0.5x2 − 1 < 0
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Analyze-
ConflictDecide

BCP Backtrack

DNN + 
Property

Boolean 
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 2

Approximate upperbound x5 ≤ 0 (due
to additional constraint from v3 = F )

Deduce x5 > 0 not feasible:
CONFLICT

Analyze conflict, backtrack and erase
prev. decision v3 = F

Learn new clause v3

v3 will have to be T in next
iteration

17



Analyze-
ConflictDecide

BCP Backtrack

DNN + 
Property

Boolean 
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

Iteration 3

Decide v3 = T (BCP, due to learned
clause v3)

new constraint −x1 − 0.5x2 − 1 > 0

Approximate new upperbound for x5
(using additional constraint from
v3 = T )

Deduce x5 > 0 might be feasible

Decide v4 = T (randomly)

...
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Analyze-
ConflictDecide

BCP Backtrack

DNN + 
Property

Boolean 
Abstraction

SAT UNSATDEDUCTION

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

x1 ∈ [−1, 1], x2 ∈ [−2, 2], x5 > 0

After several iterations

Learn clauses {v3, v3 ∨ v4, v3 ∨ v4}

Deduce not possible to satisfy the
clauses

Return UNSAT

Cannot find inputs satisfying
x1 ∈ [−1, 1], x2 ∈ [−2, 2] that cause
N to return x5 > 0
Hence, x5 ≤ 0 holds (i.e., the
original property is valid)
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NeuralSAT’s Prototype and Preliminary Results

Written in Python

Accept standard DNN formats and specs

Use DPLL/CDCL algorithms for clause learning and conflict analysis

Use the polytope abstraction (can be replace with any other
abstractions)

20



ACAS XU Results
Much faster than the constraint solver Marabou

Prop NeuralSAT Marabou

ϕ1 1025.36 TO (3 hrs)
ϕ∗

2 22.84 821.41
ϕ3 526.77 8309.09
ϕ4 330.83 133.97
ϕ5 83.51 1259.74
ϕ6 127.35 250.41
ϕ∗

7 262.01 TO
ϕ∗

8 0.15 TO
ϕ9 142.00 TO
ϕ10 191.99 3134.35

Promising because NeuralSAT is a prototype with no optimizations

Still much slower than the abstraction tool nnenum

nnenum applies a series of 7 optimizations

comparable if nnenum runs using single thread
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Current Work / Future Directions

Current optimizations for NeuralSAT

Parallize algorithms (e.g., Branch and Bound)

Develop more precise (but still fast) abstraction

Different search heuristics for boolean decisions

Future Directions

Support richer specifications

Mining specifications

Apply formal reasoning (verification, specs. mining) to GNNs
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