Scalable DNN verification using Constraint Solving

ThanhVu (Vu) Nguyen

DNN EVERYWHERE

DNN Problems

Black person with hand-held thermometer = firearm. Asian person with hand-held thermometer = electronic device.

Computer vision is so utterly broken it should probably be started over from scratch.

Screenshot from 2020-03-31 11-23-45.png

Gun	88%
Photography	68%
Firearm	65%
Plant	59%

Robustness Properties

L Diagnosis Result: Benign

DL Diagnosis Result: Malignant

Safety Properties

DNN Verification

Question: Given a network N and a property p, does N have p?

• p often has the form $P \Rightarrow Q$ (precondition P, postcondition Q)

Answer: Yes / No

DNN Verification

Question: Given a network N and a property p, does N have p?

• p often has the form $P \Rightarrow Q$ (precondition P, postcondition Q)

Answer: Yes / No

- Valid: $x_1 \in [-1,1] \land x_2 \in [-2,2] \Rightarrow x_5 \leq 0$
- Invalid: $x_1 \in [-1, 1] \land x_2 \in [-2, 2] \Rightarrow x_5 < 0$

Abstraction

- Overapproximate computation (e.g., ReLU) using abstract domains
 - interval (ReluVal), zonotopes (ERAN), polytopes (α , β -CROWN)

Abstraction

- Overapproximate computation (e.g., ReLU) using abstract domains
 - interval (ReluVal), zonotopes (ERAN), polytopes (α, β -CROWN)

- Scale well, but *loose precision* (producing spurious cex's)
 - Newer work: iterative refine abstraction to filter spurious cex's

Constraint Solving

Constraint Solving

- Transform DNN verification into a constraint (satisfiability) problem
 - To prove $N \Rightarrow p$ (where p is $P \Rightarrow Q$)
 - check if $\neg(N \Rightarrow (P \Rightarrow Q))$, i.e., $N \land P \land \neg Q$ is satisfiable
 - UNSAT: p is a property of N
 - SAT: p is not a property of N (also give counterexample inputs satisfiying P but not Q)

Constraint Solving

- Transform DNN verification into a constraint (satisfiability) problem
 - To prove $N \Rightarrow p$ (where p is $P \Rightarrow Q$)
 - check if $\neg(N \Rightarrow (P \Rightarrow Q))$, i.e., $N \land P \land \neg Q$ is satisfiable
 - UNSAT: p is a property of N
 - SAT: p is not a property of N (also give counterexample inputs satisfiying P but not Q)
- Solve the constraint(s)
 - SMT solvers (Planet, DLV) or customized simplex
 - MILP (Reluplex, Marabou)-based solvers
- Scalability is a HUGE problem

Complexity and Scalability

Complexity: NP-Complete

- Scalability is the main problem
- State-of-the-art verification tools: networks with *138M* of parameters, 160K inputs
- Real-world networks: 3.5B parameters, 1.2M of inputs

NeuralSAT: Our DNN Constraint Solver

Use NeuralSAT to prove $N \Rightarrow (P \Rightarrow Q)$

- Call NeuralSAT($N \land P \land \neg Q$)
- Return UNSAT or SAT (and counterexample)

Insight: combines conflict clause learning in SAT solving and abstraction for scalability

Example

To prove $f: x_1 \in [-1,1] \land x_2 \in [-2,2] \Rightarrow x_5 \leq 0$:

- NeuralSAT $(\neg f) =$ NeuralSAT $(N \land x_1 \in [-1, 1] \land x_2 \in [-2, 2] \land x_5 > 0)$
- NeuralSAT returns UNSAT, indicating f is valid

Boolean Abstraction

- Create 2 boolean variables v₃ and v₄ to represent *activation status* of x₃, x₄
 - $v_3 = T$ means x_3 is active, $-x_1 - 0.5x_2 - 1 > 0$
- Form two clauses $\{v_3 \lor \overline{v_3} ; v_4 \lor \overline{v_4}\}$
- Find boolean values for v₃, v₄ that satifies the clauses and their implications

Iteration 1

- Use abstraction to approximate upperbound $x_5 \le 0.55$ (from $x_1 \in [-1, 1], x_2 \in [-2, 2]$)
- **Deduce** $x_5 > 0$ *might be* feasible
- **Decide** $v_3 = F$ (randomly)
 - new constraint $-x_1 0.5x_2 1 < 0$

Iteration 2

- Approximate upperbound x₅ ≤ 0 (due to additional constraint from v₃ = F)
- **Deduce** $x_5 > 0$ not feasible: CONFLICT
- Analyze conflict, backtrack and erase prev. decision $v_3 = F$
- Learn new clause V3
 - *v*₃ will have to be *T* in next iteration

Iteration 3

• **Decide** $v_3 = T$ (**BCP**, due to learned clause v_3)

• new constraint $-x_1 - 0.5x_2 - 1 > 0$

- Approximate new upperbound for x₅ (using additional constraint from v₃ = T)
- **Deduce** $x_5 > 0$ might be feasible
- **Decide** $v_4 = T$ (randomly)
- :

After several iterations

- Learn clauses $\{v_3, \overline{v_3} \lor v_4, \overline{v_3} \lor \overline{v_4}\}$
- **Deduce** not possible to satisfy the clauses

• Return UNSAT

- Cannot find inputs satisfying $x_1 \in [-1, 1], x_2 \in [-2, 2]$ that cause N to return $x_5 > 0$
- Hence, x₅ ≤ 0 holds (i.e., the original property is valid)

NeuralSAT's Prototype and Preliminary Results

- Written in Python
- Accept standard DNN formats and specs
- Use DPLL/CDCL algorithms for clause learning and conflict analysis
- Use the polytope abstraction (can be replace with any other abstractions)

ACAS XU Results

Much faster than the constraint solver Marabou

Prop	NeuralSAT	Marabou
ϕ_1	1025.36	TO (3 hrs)
ϕ_2^*	22.84	821.41
ϕ_3	526.77	8309.09
$\phi_{ extsf{4}}$	330.83	133.97
ϕ_5	83.51	1259.74
ϕ_{6}	127.35	250.41
ϕ_7^*	262.01	то
ϕ_8^*	0.15	то
ϕ_{9}	142.00	то
ϕ_{10}	191.99	3134.35

ACAS XU Results Much faster than the constraint solver Marabou

-

Prop	NeuralSAT	Marabou
ϕ_1	1025.36	TO (3 hrs)
ϕ_2^*	22.84	821.41
ϕ_3	526.77	8309.09
ϕ_4	330.83	133.97
ϕ_5	83.51	1259.74
ϕ_{6}	127.35	250.41
ϕ_7^*	262.01	ТО
ϕ_8^*	0.15	ТО
ϕ_{9}	142.00	ТО
ϕ_{10}	191.99	3134.35

• Promising because NeuralSAT is a prototype with *no* optimizations

Still much slower than the abstraction tool nnenum

- nnenum applies a series of 7 optimizations
- comparable if **nnenum** runs using single thread

Current Work / Future Directions

Current optimizations for NeuralSAT

- Parallize algorithms (e.g., Branch and Bound)
- Develop more precise (but still fast) abstraction
- Different search heuristics for boolean decisions

Current Work / Future Directions

Current optimizations for NeuralSAT

- Parallize algorithms (e.g., Branch and Bound)
- Develop more precise (but still fast) abstraction
- Different search heuristics for boolean decisions

Future Directions

- Support richer specifications
- Mining specifications
- Apply formal reasoning (verification, specs. mining) to GNNs