

AI4SE: Semi-Automated Development of Textual Requirements: Combined Natural Language Processing and Multi-Domain Semantic Approach

By

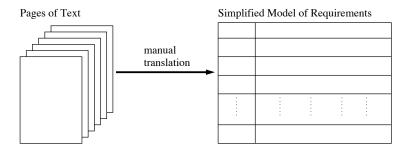
UMD Team: Mark Austin, Sachraa Borjigin, Edward Zontek-Carney Early Contributors: Andres Arellano, Leonard Petnga September 21-22. 2022

AI4SE/SE4AI Workshop

www.sercuarc.org

Cleared for Public Release

AI4SE/SE4AI


September 21-22, 2022

Modern Engineering Systems

Nearly always designed, built, operated and maintained by teams of people + automation. Key component in bringing this capability together is the ability to write and manage textual requirements early in the system development lifecycle.

State-of-the-Art Practice

Key Problems

- Poor writing skills; excessive use of acronyms.
- Manual translation process is slow and error-prone.
- How do we know if a system description is complete and consistent?

Recent Advances

- Increased adoption of SysML in the profession semi-formal representations enhance quality of communication among team members, reduce uncertainties and improve project schedule.
- Remarkable advances in AI (semantic modeling and reasoning) and ML.
- Use of text persists (e.g., for standards, regulations, etc).

Formal Representation of Requirements

- Correct (syntax and semantics) encoding of textual requirements.
- Automatic processing and traceability in the design process.
- Specific, verifiable, realistic, time-bound.

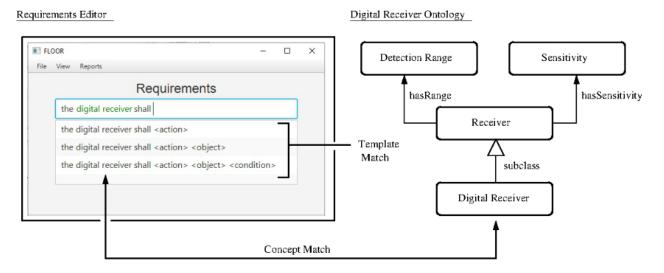
September 21-22, 2022

SCHOC

SPEED

ΙΜΙΤ

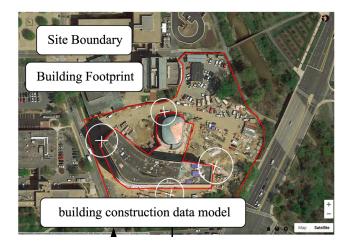
15


CHILDREN

Brainstorming Project Ideas (Fall Semester, 2013)

Idea 1 (Syntax): Use knowledge in semantic graphs (ontologies and rules) to write template-compliant textual requirements.
Idea 2 (Semantics): Support writing (development) of semantically compliant requirements
Idea 3 (Integration): Provide automated support for verification of requirements at various levels of design.

So how might this work?

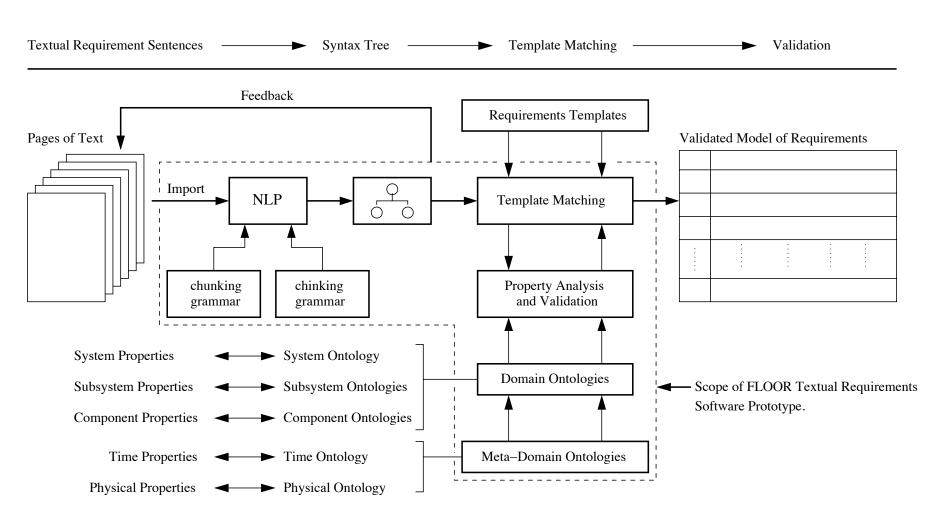

Presentation Objectives

Research Questions

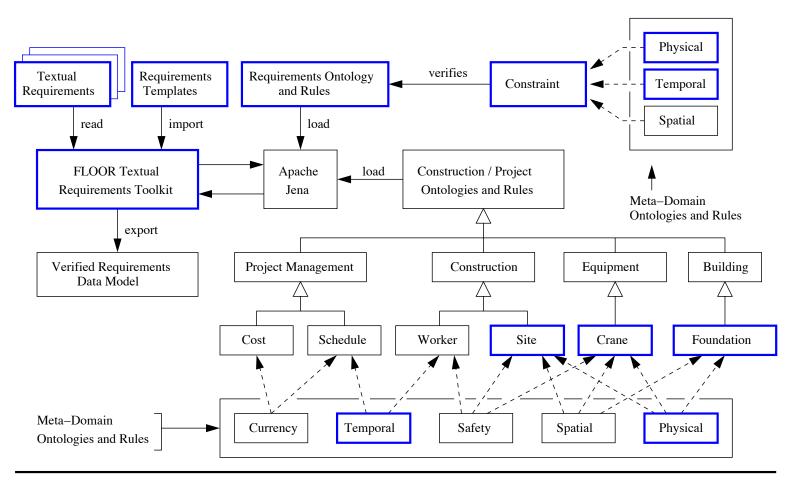
- How can multi-domain semantic modeling and natural language processing work together to improve the development of textual requirements?
- How can requirements templates improve quality of validation of individual requirements and groups of requirements?

Motivating Case Study: New Computer Science Building at UMD

Building Construction Requirements


	Project Cost											
1	1.1. The construction project budget shall be no more											
2	than US \$150 million dollars.											
	Project Schedule											
1	2.1. The construction project start date shall be on											
1												
2												
3												
4												
5	2.3. The construction project duration shall not											
6	exceed 4 years.											
	Building Foundation											
	Building Foundation											
1	Building Foundation 3.1. The building foundation shall be constructed of											
1	3.1. The building foundation shall be constructed of											
2	3.1. The building foundation shall be constructed of solid materials.											
2 3	 3.1. The building foundation shall be constructed of solid materials. 3.2. The building foundation depth shall be at 											
2 3 4	 3.1. The building foundation shall be constructed of solid materials. 3.2. The building foundation depth shall be at least 5 m. 											
2 3 4 5	 3.1. The building foundation shall be constructed of solid materials. 3.2. The building foundation depth shall be at least 5 m. 3.3. The foundation wall thickness shall be no less 											
2 3 4	 3.1. The building foundation shall be constructed of solid materials. 3.2. The building foundation depth shall be at least 5 m. 3.3. The foundation wall thickness shall be no less than 15 cm. 											
2 3 4 5	 3.1. The building foundation shall be constructed of solid materials. 3.2. The building foundation depth shall be at least 5 m. 3.3. The foundation wall thickness shall be no less than 15 cm. 3.4 The clear distance of building foundations to the 											
2 3 4 5	 3.1. The building foundation shall be constructed of solid materials. 3.2. The building foundation depth shall be at least 5 m. 3.3. The foundation wall thickness shall be no less than 15 cm. 											

Building Construction Requirements


1 2 3 4 5	 4.1. The construction manager is required to develop a project-specific orientation for all workers. 4.2. The general contractor shall have a process of validating training and certification in place for all construction workers.
1 2 3 4	 5.1. The general contractor shall maintain documentation of all equipment inspection. 5.2. The crane operations shall be suspended if the wind speed is greater than 40 km/hr.
1 2 3	6.1. The construction workers shall remain a minimum of 6 m distance from any solid red labeled exhaust system in the construction site.

Source: Zontek-Carney, 2017.

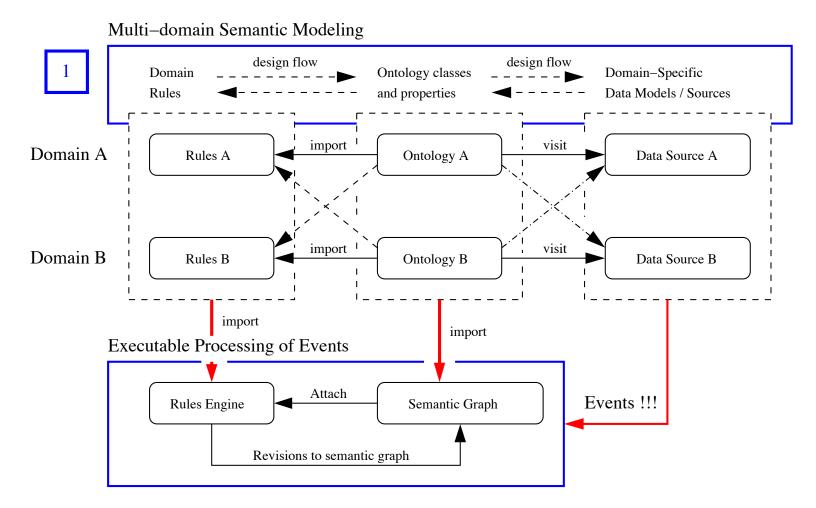
Legend for Graphical Notation: Round rectangles for classes and primitive data types.


Boxes represent software modules and individuals in semantic model.

Solid and dashed one-way arrows represent data property and object property relationships.

Source: Borjigin, Austin, and Zontek-Carney, 2022

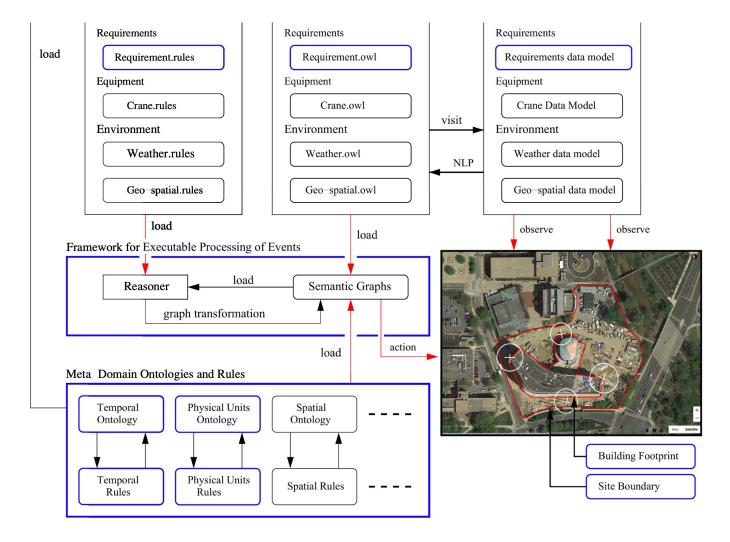
Synthesis of System Behavior and System Structure


Guiding Principles

- Data-driven approach.
- Co-development of ontologies, rules and data models.
- Ontologies visit data models to get individuals.
- Enhance power of rules with backend software functions.
- Semantic graph dynamically responds to incoming events.

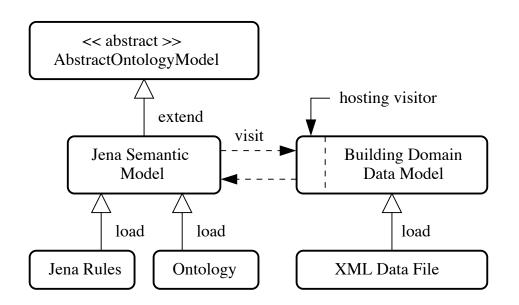
Multi-Domain Semantic Modeling

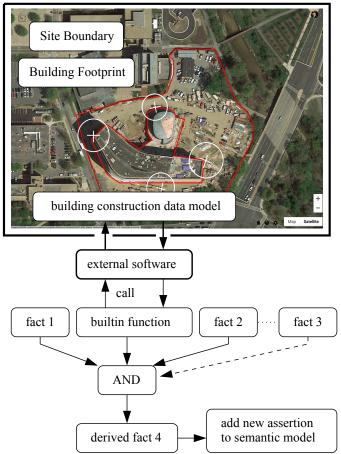
Data-Ontology-Rule Footing (UMD / NIST / SERC in 2017).



Source: Coelho, Austin, Blackburn, 2019

Multi-Domain Semantic Modeling

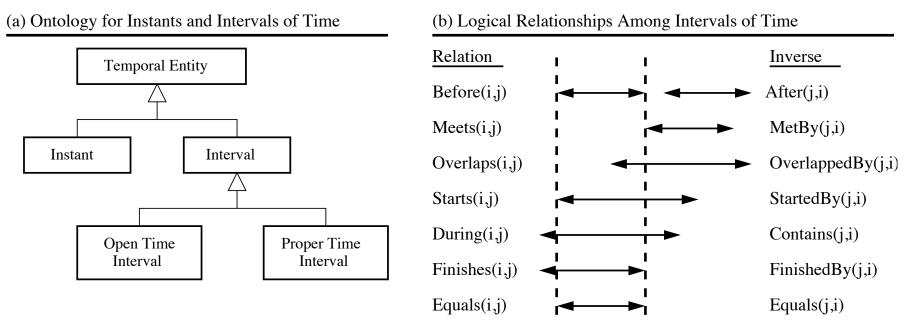

Executable Processing of Events


Working with Apache Jena and Jena Rules

Data-Driven Approach to Generation of Individuals in Semantic Graphs

Forward Chaining of Facts and Results of Built-in Functions to New Assertions...

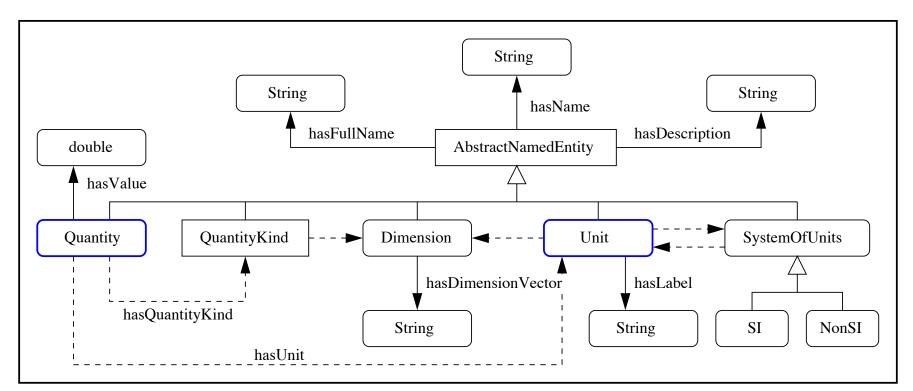
real world building environment



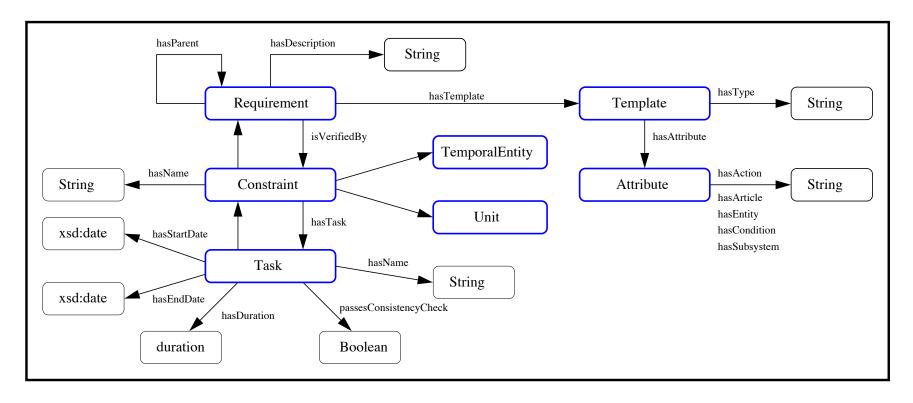
Modeling Time

In order for a decision involving time to be reliable, the underlying models of time and theories of reasoning need to be formal.

Temporal Domain


Source: Allen, 1983.

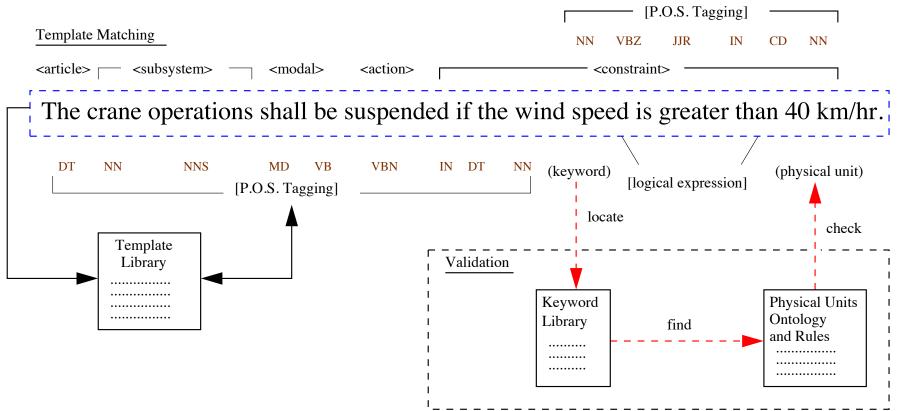
Physical Units Domain: Length, Mass, time, Temperature


unit =
$$k \cdot L^{\alpha} M^{\beta} t^{\gamma} T^{\delta} \cdot \mathrm{rad}^{\epsilon}$$

Semantic Representation for Physical Quantities and Units

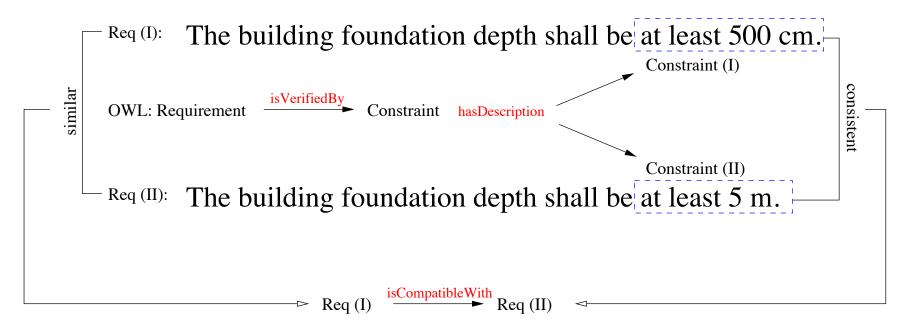
Requirement, Constraint, Template, and Task Ontologies

FLOOR Software Prototype

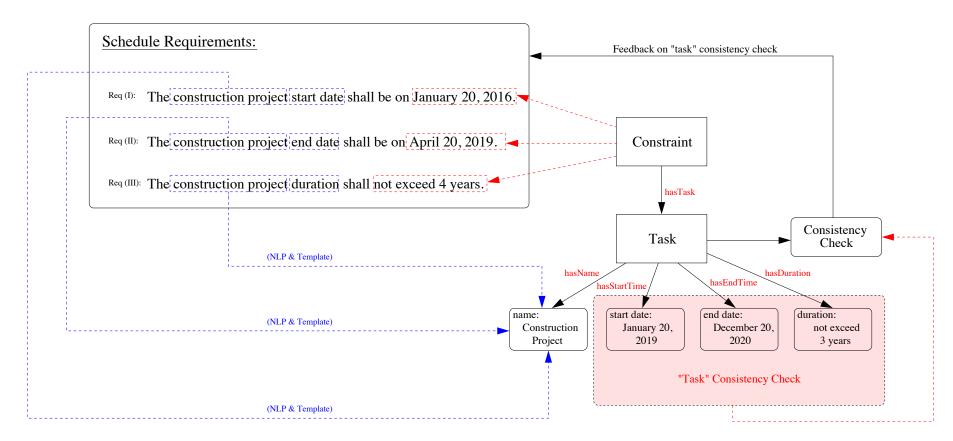

Framework for Linking Ontology Objects and Textual Requirements.

File Outlines Table Hele			Req	uirement Developm	ent Toolkit 2.0	0 (JavaFX)				
File Settings Tools Help										
nport: Requirements and Tem	plates and O	ntologies C	Dutput:	ৎ	View: Rec	quirement or Template	or Ontology	User Gui	de CLEAR Exit	
how: Menu Next All	Reports:	Generate Cor	mpleteness	Clear L.H.S. O	WL Table: 0	Class Object Data	Verification: C	lick to Process	Process ALL Validate All	
lasses:					Re	quirements				
Node	Ô	The crane								
Address CraneWorkZone							ר		have center	
ConstructionCrane	Requireme	nt ID Lev	The crane <modal></modal>	>	-	Template List	Description	_	have circularreach	
	ROI 1	1	The crane <modal></modal>	< Action>	nstruc	tion site building foundation s		of solid materia	have description	
bject Properties:	ROI 2	1	The crane <modal></modal>	Action> <ent< p=""></ent<>	ity> hstruc	tion site building foundation d	lepth shall be at least	5 m.	have description	
belongsToCrane	ROI 3	1	Safety	SUCCESS!	The construc	tion site building foundation s	hall have a minimum	of 60 cm clear	have id	
hasGeometry	ROI 4	1	Safety	SUCCESS!	The construc	tion site building foundation v	vall thickness shall be	e no less than 1	have shape	
hasAddress	ROI 5	2	Performance	NO NEED!	The project s	pecific orientation guidelines	for all construction w	orks shall be p	nave snape	
hasGeometry	V ROI 6	2	Risk	SUCCESS!	The construc	tion project budget shall be n	o more than 20 millio	n-dollars.	have status	
ata Properties:	ROI 7	2	Functional	SUCCESS!	The crane op	erations shall be suspended it	f the wind speed is gr	eater than 40 I	have validworkzone	
hasShape	A ROI 8	2	Safety	NO NEED!	The general o	contractor shall have a proces	s of validating trainin	g and certificat		
hasID	ROI 9	2	Safety	NO NEED!	The general o	contractor shall maintain docu	mentation of all equip	oment inspectio	overSiteBoundary	
hasDescription	ROI 10	2	Safety	SUCCESS!	The construc	tion workers shall remain a mi	inimum of 6 m distand	ce from any sol	id red labeled exhaust sy.	
overSiteBoundary	< [4				> `	
hasStatus Ontology Information					uirement able				Ontology Suggestions	

Case I: Detailed Validation of an Individual Requirement


Requirement: 5.2

Case 2: Identifying Requirement Duplicates


Requirement: 3.2

Case 3: Group of Requirements Relating to a Single Task

Requirements: 2.1, 2.2 and 2.3

- Allen J.F., Maintaining Knowledge about Temporal Intervals, Communications of ACM, Vol. 16, No. 11, 1983, pp. 832-843.
- Apache Jena, Open Source Java Framework for Building Semantic Web and Linked Data Applications, See: <u>https://jena.apache.org</u>. 2022.
- Arellano A. Zontek-Carney E., and Austin M.A., Frameworks for Natural Language Processing of Textual Requirements, Int J. Adv. Systems and Measurements, Vol. 8, No 3., 2015, pp. 230-240.
- Arellano A., Zontek-Carney E., and Austin M.A., Natural Language Processing of Textual Requirements, In Proc. 10th International Conference on Systems (ICONS 2015), 2015, pp. 93-97.
- **Borjigin S., Austin M.A., and Zontek-Carney E.,** Semiautomated Development of Textual Requirements: Combined NLP and Multidomain Semantic Approach, Journal of Management in Engineering, ASCE, September, 2022.
- **Coelho M., Austin M.A., and Blackburn M.R.,** The Data-Ontology-Rule Footing: A Building Block for Knowledge-Based Development and Event-Driven Execution of Multi-Domain Systems, 2018 Conference on Systems Engineering Research, Charlottsville, VA, May 8-9, 2018. Also see: <u>Chapter 21, Systems Engineering in Context</u>, Springer, 2019.
- Coelho M., Austin M.A. and Blackburn M.R., ``Semantic Behavior Modeling and Event-Driven Reasoning for Urban System of Systems,'' International Journal on Advances in Intelligent Systems, Vol. 10, No 3 and 4, December 2017, pp. 365-382.
- **Zontek-Carney E**., Framework for Linking Ontology Objects and Textual Requirements, MS Thesis in Systems Engineering, University of Maryland, College Park, May 2017.

Questions?

Contact Information

Mark Austin: <u>austin@umd.edu</u>, http://www.isr.umd.edu/~austin

AI4SE/SE4AI