Understanding Datasets

Seeing the Unseen through Graph Automations

September 2022

SOLVING PROBLEMS
Approved for Public Release; Distribution Unlimited. Public MITRE l FOR A SAFER WORLD"
Release Case Number 22-2914

The N eed The Problem To Solve

e Simplified mechanism for building and unifying disparate data sources into a
normalize high performance Unified Data Fabric, which can be evaluated
and understood for Analytics, Machine Learning, and Simulations

e Mechanisms to visually explore and understand both data entities and their
relationships to one another

e Mechanisms to understand and traverse threads of augmented entities

e Mechanisms to project and understand through graph analytics the desired
dataset

The Rules Simulation Engine is the Answer, One mechanism for all these things, and more.

MlTRE Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914 2

Why Graphs?

High performance Entity<->Entity Relationship Management

Any Entity can reference any other Entity. Graphs are highly Adaptable, and White Board Friendly (Schemaless)
Graphs are the foundational element for Analytics, NLP, ML, and Al.

Graphs are thousands of time faster than the best Relational Databases even on small datasets and the
performance gap grows exponentially as dataset sizes increase

Relationships are First Class Citizens

Graphs are the cornerstone of our solution

Find Reports and How Many are Managed Three Level Down Comparing Graph and Relational Structures

Recursive Cypher Recursive SQL Dataset of 1000 people, each with 50 friends. Find all the
match (boss)-[:Manages*0..3]->(mgr) So—— paths from one person to another in four or less hops.

where boss.name="Dave Green” sl PP e i e
and (mgr"[ManagES]'>()) e e e s RDBMS 1,000 2000ms

; Neo4) 1,000 2ms
Neo4) 1,000,000 2ms

Declarative

Dataset of 1,000,000 people each with 50 friends. Find
friends of friends up to five levels deep.
Depth RDBMS (ms) Neo4) (ms) |Records Returned
2 0.016 0.010 ~2,500
3 30.267 0.168 ~110,000
4 1543.505 1.359 ~600,000
5 unfinished 2.132 ~800,000

Describe what you want
Not of how to do it

Graphs are schemaless and adaptable to
changing requirements.

Relationships are first class citizens

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Grammar Overview

Grammars are complied into native graph languages, currently
Cypher a Neo4J open standard, but could also generate other

Graph languages.

Grammars are able load data from an ever-growing set of data

sources.

Graph Native
Language

Compiler

RSE Grammar

Data Source

Integrating Disparate Data Sources

RSE Grammars can be
complied into multiple graph
languages

Grammars simplify and
augment the ability to create
graph structures without have
to write and support graph
language scripts

RSE Grammars can import
data from a variety of data
sources. Currently we support
Relational and CSV formats

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Unified Data Fabric Creation Mechanism

Unified Data Fabric
Master Graph

Multiple subgraphs defined through Grammars are
automatically combined into a single source of
truth, a Unified Data Fabric

o

Graph Native

Graph Native

Subgraph Subgraph
'\

«

L

Graph Native Graph Native

Language Language Language Language

RSE Generation Engine

Compiler Compiler Compiler Compiler

RSE Grammar RSE Grammar RSE Grammar RSE Grammar

Disparate Data Sources

Data Source Data Source Data Source Data Source
Ccsv Relational JSON ‘ Other

Overview Schematic
Rules Simulation Engine Schematic

Easily “See the Unseen” through an easily constructed, high performance, Unified
Data Fabric composed from multiple subgraphs. Subgraphs are constructed, from
disparate data sources, through our Grammar technologies.

Insights from the Unified Data Fabric are enhanced through high powered
analytics, machine learning technologies, as well as our Rules Simulation Engine
powered by autogenerated domain agnostic Templates.

Multiple subgraphs defined through Grammars are
automatically combined into a single source of
truth, a Unified Data Fabric

Unified Data Fabric
Master Graph

Graph Native

Graph Native
Language

Graph Native Graph Native
Language

Language Language

| RSE Generation Engine

Compiler Compiler Compiler

RSE Grammar

| Disparate Data Sources ‘
Data Source Data Source

{| Relational || JSON

Compiler

RSE Grammar

Data Source
Y

RSE Grammar‘ ‘RSE Grammar

Data Source
J Other

Simulation Through Autogenerated Templates

External Resources Integration

External Resources

Logic Template
» initialize Method |

Auto Generated External

E8 Input Param Maps

‘;JH ‘\ ‘ E8 Result Param Maps

‘ E8 Per Node Methods |

\ E5 | Each Node in the Simulation
\[E]/ Path has a Logic Template

é« - Accumulation Method

Grammars, in addition to software used to
create the graphs, also generate Templates
which can hold externalized domain logic.

Graph Traversal Schematic

Scenario: {E1}->{E8)->{E2)

| RSE Grammars define
the Data Entities and

| their Simulation Paths.
From these RSE

. Grammars, the Rules
Simulation Engine

| autogenerates Logic

| Mechanisms for
| Simulations.

Simulation Run

rocen]| 212

o [68

value |[

| Templates and Traversal| |/

Graph Analytics

Determines the
importance of distinct
nodes in the network

Estimates the likelihood
of nodes forming
relationships

Learns graph topology to
reduce dimensionality
for machine learning

1

1

-

Data Science Library

Community
Detection

Centrality
(importance)

Similarity

Heuristic Link
Prediction

Path Finding h
—— Node Embedding

‘ Detect group clustering
‘ or partition options

Evaluates how alike
nodes are

Finds optimal paths.
Evaluates route
availability and quality

Traverse graph
pathways invoking
agnostic externalize
domain logic.
Grammars also
generate these
domain agnostic
Templates

Machine Learning and Knowledge Graphs

==
- —Se &

Relationships are First Class Citizens in a graph.
Strong relationship understanding improves Machine Learning results.

our

interfaces directly with Machine Learning services

Embedded vectors

ata Sclence lerarv

FastRP e

Algebra

Speed Accuracy

1,1,1,1,0,0,1,1,1,1,1,0,0,1,0,1,1
—

1,0,1,0,1,0,1,1,0,0,0,1,1,0,0,0,1
1,0,0,1,1,1,0,0,0,10,1,1,0,0,0,1

GraphSAGE [Neural

Networks

Inductive Reasoning

(GCNN)

Node2Vec Neual

Networks
(SkipGram)

Interpretable
Hyperparameters

— O
Knowledge Graph

Descriptive Entity to Entity Relatlonshlps

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Perform rich graph
analytics over a high
performance, easily
customizable, data
structures

Easily vectorize RSE
structures for
integration with
Machine Learning
Engines.

Making Decisions Through Thread Pathways

Create & Accumulate Graphs

Variable Path, Variable Steps Most projects can identify Data Entities that
Simulation Path 1 might contribute to the eventual outcome,
with new Data Entities constantly emerging.

Our Solution provides a simple mechanism to
define scenarios. These scenarios select, and
order, Data Entities which can be included
Simulation Path 2 into variable length Simulation Paths.
{A}->{B}->{C}->{D}->{E},
{C}>{B}->{S}->{G}->{A},
{B}->{S}->{L}->{K},

\:h. — Data Entity values may have multiple

e e settings. For example, Income Levels may be
Simulation Path 972

T described as a set of ranges.

Because of the dynamic nature of projects,
Simulation Paths must be easily, and dynamically,
defined from external sources.

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Thread Entities Receive Domain Logic

Auto Generated Graphs Elements

Templates to Externalized Logic|, Internal/External Resources

PerNode Template
Trai PerNode Template

E Tra

E PerNode Template

Te
Transactional
P¢ ’ Update ‘

RSE Grammars

:
User Supplied

Linear
Simulation

Grammars

Accumulate

‘ome—c-m—cgcnn:b‘

‘ Query ‘
Templates

.' u Per-Node

NLP
APOC
NLP Engine

Evaluation |
Voting Mechanism

Library

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Data Science Library: A Global View

Graph Analytics

Determines the importance of distinct
nodes in the network

Data Science Library

What are the important predictors that
we should consider?

Estimates the likelihood of nodes
forming relationships

Community

Detect group clustering or partition
options

Detection

Centrality
(importance)

Similarity

Clients with X
probably also would choose Y.

Learns graph topology to reduce
dimensionality for machine learning

Graphs are the base technologies for
neural networks, so let us use them to
feed our machine learning services.

What do our clients have in common?
How can we discover emerging group
types?

Evaluates how alike nodes are

Heuristic Link
Prediction

Path Finding

Node Embedding

Maybe we don’t need both nodes,
simplify our models?
Maybe Discover new trends?

Finds optimal paths. Evaluates route
availability and quality

What are the most common pathways
through a system, those are the ones we
should optimize.

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Solution Entity Pallet Mechanisms (Cl/CD)

Approved Solution . .
Entity Pallet e Solution Entities are the

Solution Entity cornerstone of our

Solution Entity Solution Entity .
Candidates . solution.

Solution Enti —
_ 9 ty Accepted Solution Entities

Adapter | undergo a Certification

Certification Process and normal
Results

Certification Cl/CD pipeline

. 2 Process
Solution Entity Rejected Solution

= ”'y P'e Solution Entities are
. olution Entity) i
Rejected combined provide

Adapter perspectives into our
: : high-performance

datasets.

Adapter

Adapter

REERN S

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

The Al Infrastructure Pipeline

Solution Entity

Solution Entity

Service

Adapter

Load
Named

Entities

Anti Bias
Mechanism

Solution Entity

Fundamental Building Blocks

Solution Entity

Service

Adapter

Diagram Legend

Adapter Adapter

— Declarative Interface

[] Solution Entity Mechanism

Solution Entity Adapters are the core mechanism for integrating disparate

components into a collective Al Infrastructure through Declarative Interfaces.

Solution Entity Adapter

Solution Entities are the next generation, domain agnostic Rule Engine Templates,
residing in, and are selected from, a pallet library. Solution Entities expose and are

connected through declarative interfaces

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Plug and Play Infrastructures

Interface Mechanisms

Current Interface Schema

Declaritive Interface Schema

Servers and Clients are Roles. A component often operates in both Roles

The need for an
attribute set, generally
requires acquisition
through multiple
interfaces and multiple
requests from the
Client.

The Client then has to
parse the presented
structures to obtain
the desired results.

The Client is tightly
bound to the structure
of the Server. Changes
to the Server
interfaces (X -> X1)
directly affects all X
dependent Clients.

Client

Requests

|

Response
Processing

Each Service interface
exposes one or more
methods (functions
with parameters and
return types)

Corollate

Service

SOAP, REST, and
Language Native,
although different, are
common interface

types

o Request Processing

6 Request Processing

@ Request Processing

Declarative Interfaces
establish a common
declarative request
mechanism
throughout the entire
topology

Tightly bound components are contrary to Plug and Play topologies

Interface versioning complicates the topology and the exposing Services

Transferring unrequested attributes harms performance on multiple levels

The Service
Exposes a single
interface to all
Clients and Client
versions.

Requested
Attributes

000

Response

° ray
(B

The Schema
contains pre-
canned
components which
provide access to
disparate data
sources.

Requests contain
a the list of
Requested
Attributes.
Services send
only Requested
Attributes
simplifying Client
processing.

Request Processing

Schema

@ sqL

e Graph

@ Object

MS Office

The Schema creates
a standardized
Key:Value
Response object
which is returned
to the Requestor.

Declarative Interfaces simplifies both the micro and macro topologies

Declarative interfaces promote a Plug and Play Infrastructure

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Gaining and Evaluating Different Perspectives

Perspectives

Solution Entity

Adapter

Solution Entity

Adapter

Solution Entity

Adapter

Solution Entity

Adapter

Solution Entity

Mechanism 3

Adapter

Solution Entity

Adapter

Solution Entity

Adapter

Solution Entity

Mechanism Q

Adapter

Solution Entity

Adapter

Evaluation Engine

Measures

Recommendations

Ranked Recommendations

Ranking

Score

Ranking

Score

Ranking

Score

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Fundamental Building Blocks

Solution Entities
are combined in
any order for
multiple
perspectives

Perspectives are
then fed into the
Evaluation Engine
which produce
Ranking Scores.

Observers Provide a Global View

[rAI Infrastructure Pipeline

Solution Entity Solution Entity

Solution Entity Solution Entity

|

|

|

|

| - A

| Mechanism Mechanism
{
|

|

|

|

|

Adapter
Adapter Adapter

:_Umbue Solution Entity I
IObservers | Observer

I i

Reporter

For SE-A For SE-B

Report For SE-A RepOSitO r\/ Report For SE-B .

| Recommendation | | Recommendatlon|
| N Y IEEE) I I | N I IEEE IR I I

Each Solution Entity Adapter implements an Observer Pattern which reports
Events are Relevant State into a common MaEPing Service Repository

Approved for Public Release; Distribution Unlimited. Public ase Case Number 22-2914

Fundamental Building Blocks

General Mapping Service

:-AI Infrastructure Pipeline

Solution Entity

Mechanism |
B

Adapter

Solution Entity

' Mechanism
A

Adapter

Solution Entity
States are
preserved directly
through their
Adapters or the
Observers into a
high-performance
graph structure

Solution Entity

|
|
|
|
|
|
|
|
|
|
|
|

Solution Entity

Service

Adapter Adapter

Member

Mapping Service

Solution Level
Allocaiton

Entlty Name
Team Badge #

Jim Davis

A

Allocaiton

Interest

Name

Skill

Level

Level

Badge & IInterest

NLP

)

Interest

Level

Interest

Level

Member

Jim Davis

Level

Allocaiton

Name

Badge #

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

which are easily be
explored visually or
through graph
analytics.

Wra p U p The Problem To Solve

Simplified mechanism for building and unifying disparate data sources into a normalize
high performance Unified Data Fabric, which can be evaluated and understood

MITRE Grammars/Compiler provide a simple mechanism to create new graph structures
to address emerging explorations through multiple services

Mechanisms to visually explore and understand both data entities and their relationships
to one another
Bloom: Perspectives, Share Discoveries within teams, Near Natural Language processing

Browser: Cypher developers interface simplified through our Grammars
Mechanisms to understand and traverse threads of augmented entities

Templates and Solution Entities provide domain agnostic Rules Engine thread processing
Mechanisms to project and understand through graph analytics the desired dataset

Analytic Projections and Machine Learning integration through Data Science Library

The Rules Simulation Engine is the Answer, One mechanism for all these things, and more.

MITRE E

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

MITRE Labs inspires breakthroughs in applied science
and advanced technology to transform the future of
U.S. scientific and economic leadership. Our goal:
Deliver disruptive innovation to support our mission
of solving problems for a safer world.

Please feel free to contact me with any questions

Thank You

Ray Lukas ()
Jim Lockett ()

The Attached Appendix Supplies More Detailed Explanations of RSE Grammars and Subgraphs

MITRE

rlukas@MITRE.org
Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Database Comparisons

Relational

‘ Database Purpose Attributes

Strict schema and data normalization separating data into tables.
Relational To preserve data consistency ACID transactions are supported.
This imposes limitations on how relationships can be queried.
Oracle \ Highly Refined \ Translations from OO to Rel are difficult and expensive.

| Table Based |

sQL | ACID Transactions |
S | Rows and Columns ‘ \ Schema Based \ Relational model and other NoSQL database models link the data
erver : a '
by implicit connections

No SQL A _
MongoDB

Relationships are reunified at query time

Eventual Consistency

| Key-Value Storage |

Cassandra] Document Storage \ Great for Web

Interactions Whiteboard Friendly/Object Oriented: Native Graph databases
have no pre-canned schema. Structures are directly mapped, any
node can point to any other node. Unlimited query environment.

Graph

Spanner

Graph
Anzo . Model Simplicity |

White Board Friendly Relationships are first-class citizen in a graph database and can

be labelled, directed, and assigned properties

High Speed Entity- ACID Transactions
Neo4) Entity Traversals

Schemaless Graphs and their Analytics Libraries are Very Scalable. Our graph
| i i technology can handle Trillions of nodes. Graphs with less than
10 million nodes and relationship are considered small.

But Which Is The Best? It Depends On What You Are Doing

Performance: Connections are made a creation time, not at query time

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

% ff Mongo DB contains ACID Transactions|

RSE General Terminology

Basic Graph Terminologies

Grammars: Grammars provide a simplified abstraction mechanism from the underlying graph technologies (in our case the Cypher
Language) used to describe, and create graph, structures. Grammars are much like a high level programming language (C, C++,
Java) which abstract the underlying CPU capabilities (assembly/machine code) mechanisms. Grammars are compiled into the
underlying Cypher codes.

Pattern: Patterns are basic text strings (called ASCII Art) which describes a Node’s Relationship to another Node.
(Node)-[Relationship]->(Node). See Appendix for details.

Cypher: Cypher is the language of Graphs. Our Grammars are abstractions of Cypher and are compiled into Cypher which can be
easily deployed to create new high performant graph structures. Cypher’s compliment in the relational data world would be SQL.
Cypher is basic SQL for Graphs, but much better.

Create and Merge Commands: Two basic and commonly used Cypher commands. Create creates the presented Pattern, even if is
already exists. Merge uses the presented Pattern if it already exists, else it creates a new pattern in the database. This is the
underlying mechanism for auto connecting subgraphs and/or sharing threads in the Accumulation graphs.

Rules Simulation Engine Terminologies

Rules Engine: A Rules Engine is a service that allows domain (system) logic to be defined and invoked externally from the engine.
Since the logic of the system is externalized from the engine, this allows the engine to be easily adapted to, and used across,
virtually any domain. This is a cornerstone concept in our solution, and how we provide a domain agnostic solution.

Simulation Path: A graph is a series of interconnected entities (nodes). Our Rules Simulation Engine is able to traverse these
pathways and for each node invoke externalized domain logic living inside autogenerated templates. This is how our Rules
Simulation Engine implements a high performance, domain agnostic, decision/simulation mechanism. This technique is generally
used with Create and Accumulate (threading type) graphs. Merge graphs are generally for graph analytics.

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

RSE Grammar Node Types

RSE Grammar Node Types

Standard Element Types

Node (instanceVar:LabellList{AttributeNameValuelList})

Relationship (node)-[instanceVar:RelationshiplLabelList{AttributeNameValuelist}]-(node)

Enhanced Element Types

Enhanced Visualization

Index Nodes: These are special autogenerated nodes which group like nodes together. For example, all the statesin a
country, all the counties in a state, all cities in a county all the data centers for each city. Each of these topology nodes
are index nodes.

Graph Debugging

Data Source Nodes: Special nodes created for each data source that connect to all the nodes from that data source.
Data Source nodes allow you to visualize the data sources for each node in a subgraph.

Error Graphs: ErrorType nodes are generated when errors are found in the underlying data source. Each ErrorType
node points to nodes which describe each occurrence of such errors. Currently null data elements are supported, with
additional error detection schemas under development

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Unified Data Fabric

Subgraph Technology: Each Data Source can define one or more subgraphs. Subgraphs can be loaded in any order, or not
a at all.

Proxy Nodes: Proxy Nodes (DS1:2 and DS3:1) are Place holder (Proxy) nodes which define connection points that will be
mapped to by other subgraphs. Proxy Nodes hold only the state information defined in that Data Source.

Data Sources e ndependentsub Grahs Unified Data Set/Fabric [FloadiOneriznostic

Data Source 1

Proxy Node Mappings

* DS1:2is defined in DS2:2.
DS1:1 : When DS2 is loaded DS1:2

Itm&i /:\f;z;tge]d | item 2: Proxy Node Jatebiatic ot is mapped and augmented

Data Source 2 with Attribute 4 and

Attribute 5
R g Creates) P ; N 4 DS3:1 is defined in DS1:1.

Item 2: Augmented Item 6: Augmented ! ‘ Loading the Data Source 1
[Atr4, Atr5 _ [Atrl, Atr3] DS3 . 5 DS3 .4 subgraph maps to DS3:1

DS34 N latrs, atrt) ST ion and load Attribute 1,

Attribute 2, and Attribute 3

DS3:5 = Wi

[Atr4, Atrl] ‘i\
- - — . ‘ s\ Subgraphs are Defined in the RSE V2.0 grammars.
Item 5: Augmented e DS3:] Load Only the Graphs/Data that you Need and Want for a Particular purpose.
[Atr4, Atrl] Proxy definitions are similar to Foreign Keys in a Relational Database, but Hyper Performant.
ltem 4: Augmented 3 : Each Node Definition can be augmented with multiple property values.
[Atrl, Atr3] ‘ Item 1: Proxy Node Nodes are still able to invoke external templates and external resources.
4 External Templates can also modify graph structures.

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Visual Exploration Mechanisms

Easily discover patterns yielding more questions and explorations.

Near natural language visual explorations of graph structures without knowing SQL or Cypher.
Bloom even can suggests entities to include in your visualizations.

ey Provides mechanisms to easily update graph entities without knowing Cypher

Accelerated
Visualization

Graph customizations (millions of colors, property based styles, icons, auto sizing, etc.)

High Easily augmented capabilities through embedded Cypher enrichments
performance

phVS;CS _a”d Provides defined perspectives which are tailored for a specific role or context
renaering

Subgraphs, Perspectives, Scenes, and other enrichments can be shared

Browser

Developer Tool requires Cypher, the Language of Graphs, Knowledge

Limited display (colors, sizing of entities, no node icons, etc.) capabilities

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Node Definition

Grammar Components

DS1 DataCntDS:

MultiFields

MultiFields contain

NodeName

DataCenter(

multiple delimited
data elements

embedded into a

Identifier

single column.
In this example

these are separated

by the semicolon

{Augil, Aug2}

DataCenter, Type,!Asset@;) | FIsMA@;

character.

Node Definition Grammar

DataSource

[7 TMultifield Definition

Unique Node Identifier. Attribute Name
will be “value” in the subgraph

NodeName(Identifier {Augl, Aug2}

The Name of the Node in
the Subgraph

Additional Data Source Resident
Augmentations for this Node

Semicolon Delimiter

Data Center Node

Node Properties &

DataCenter
%

" Bedford Gd>
DCB-Prd | id 6

DataCenter DC002
Name Bedford DCB-Prd

Type Production

DataCntDS:DataCenter(Name{DataCenter, Type, Asset@;, FISMA@; }) ‘ name

nType State
DataCenter

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Node Definition Grammar

Data Source

Defines where this node
should obtain its attributes.
Current supported data
sources include CSV files and
Relational Database Tables.
Node Name

Node names are no longer
restricted to the column
name.

Identifier
List of the unique identifiers
(primary key concept) for this node.

Augmentations

Defines additional attributes
from the data source which
should be included into this
Node.

Improved Autogenerated
Graph Structures
Accumulate, Create, and
Merge graph

Subgraph Definition

Subgraph Technology:
Subgraph Definition Data Center Subgraph * Each Data Source defines

: X —~ can a subgraph. The
Root Node -> Destination Nodes mm, DataCenter data source

Root Node

defines the following Data

(o) Q O (s Center subgraph.
DS1: NodeName(Identifier | {Augl, Aug2} ||) ’;E‘Bm - Ce-va 2 ¢ Q Multiple subgraphs can,
V- S [Bets | - through our simplifies

\ DCA-Val

l\‘Asset»BSDo“vj Bt | - grammars, be defined each
- from separate or shared

Bedford TN
oY data sources and types.
i e % Bedford ‘\Asset-asoov’_
DS1: NodeName(|dentifier | {Augl, Aug2} , O .\ DeADEY o Subgraphs can be loaded in
a DCA-Prd (:

Destination Node List

any order, or not at all.

Loading a subgraph

DS1: NodeName(ldentifier | {Augl, Aug2 [nsenon| £ . |
(S Nt Q /TN automatically connects like
| Assel-A200 | f A

| s nodes together into a
Master Graph

Graph Definition Example Only load the data you

DataCntDS: Type@I(Type) | >| [DataCntDS:DataCenter(Name{DataCenter, Type, Asset@;, FISMA@;})] need for your specific
explorations

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Data Center Subgraph
Data Center Subgraph

(

Sedfors |
\ DCB-Dev /

-

=

Asset (9)

Node Properties (&

DataCenter

<id> 9

DataCenter DCOO03

Bedford DCA-Val
Validation

Name

Type
nType State

name DataCenter

Node labels

Losiaconies i QT ID

Relationship Types

goesTo (23)

Displaying 26 nodes, 35 relationships.

DataCenter Name
DCO01
DC002

DC003
DCo04
DCO005

DCO06

Bedford DCA-Prd
Bedford DCB-Prd
Bedford DCA-Val
Bedford DCB-Val
Bedford DCA-Dev
Bedford DCB-Dev

Constructing the Data Center Subgraph

We can see that the Data Center Data Source
contains two multifield elements, Assets and
supported FISMA elements

There are two types of Index nodes, both
shown in Red. DataCenter Index node in the
center points to all Data Center nodes. The
Type Index node (Production, Validation, and
Development) connect to their respective
Data Center types.

Asset nodes are Proxy Nodes, containing on
the Asset ID.

Data Center Data

Asset

Asset-A500
Asset-B500
Asset-A400

FISMA

FISMA-001; FISMA-004; FISMA-008
FISMA-002;FISMA-008
FISMA-003;FISMA-003;FISMA-002
Asset-B400 FISMA-004;FISMA-010;FISMA-003
Asset-A100;Asset-A200 FISMA-005;FISMA-001
Asset-B100;Asset-B200;Asset-B300 FISMA-004;FISMA-010

Type
Production
Production
Validation
Validation
Development
Development

A a Neranp Constructing the Asset Subgraph

A = Derap

Node Properties Define Asset Index Node

Asset AssetsDS:Assets@I()

<id> 39

Asset Asset-B800

Define Vendor, AssetType, ClassType, DeviceType Index Nodes

AssetName Unix OS AssetsDS:Vendor@I(Vendor)

AssetsDS:AssetType@I(AssetType)
AssetsDS:ClassType@I(Class)
AssetsDS:DeviceType@I(DeviceType)

AssetType Server
BiosGuid S300-BG
Class Virtual

DeviceType Software

HostName Host-B300 Define Asset Node

IP_Address 123.123.123.006
IP_Address_ |PV4
Type

AssetsDS:Asset(Asset{AssetName, Vendor, Class, AssetType, DeviceType,
BiosGuid, Versions, HostName, IP_Address Type, IP_Address})

DELL
Us.8

Crare

Vendor

Versions

nTuna

Asset Data

T Aset AssetName Vendor Assetfype (Class Devicelype BiosGuid

.Versions HostName P Address Type [P Address

2 AssetA100 DelServer Dl Server Vitual ~ Hardware S1008G V324 Host-AL00 IPVG 123.13.123.001
Assets have a single Asset Index node 3 Asset-A200 Windows Office Microsoft Desktop ~ Physical Software ~ D200-B6 C-25 Host-A200 IPVA 123.123.123.002
pointing to all Assets 4 Asset:A300 Phone Systems Plantronix Phone Physical ~ Com PHI00-BG V831 Host-A300 IPV6 123.123.123.003

 Assel-M00 Power Generator PowerHouse Power Physical ~ Infra PW100-86 (2 Host-Ad00 1PVA 123.123.123.004
6 Asset-AS(0 Dell Server Vitual ~ Hardware 520086 V34 Host-ASO0 IPV6 123123123005

Assets have multiple Index nodes each
describing various Asset characteristics

Dell Server

Vulnerability Subgraph

Vulnerabilty Subgraph Vulnerability Grammars

o Node Properties ta Define Vulnerability Index Node
' e Vulnerability VulnerabilitiesDS:Vulnerabilities@I()

b 2 Define RiskLevel, DeviceType, Effects, Vendor Index Nodes

VName003 V241 AssetName Phone Syst
Description Staticonef |VulnerabilitiesDS:RiskLevel@I(RiskLevel)
DeviceType Com VulnerabilitiesDS:DeviceType@I(DeviceType)
DiscoveryDate 9/23/2020 | VulnerabilitiesDS:Effects@I(Effects)
Effects Degraded M | VulnerabilitiesDS:Vendor@I(Vendor)
Name VName003

RiskLevel High Define Vulnerabilty Node

Vulnerability vuinoo3 - B1yylnerabilitiesDS:Vulnerability(Vulnerability{Name, DiscoveryDate,
Description, DeviceType, AssetName, Effects, RiskLevel,

DeviceType, Versions@;, ImplemImpact@;})

nType State
name Vulnerabilii

| VName001

V34 o

Medium

Vulnerability Data

A B C D E F G H | J K
VulnerabiliName DiscoveryDate Description DeviceType AssetName Effects RiskLevel Vendor ImplemImpact Versions
Vuln001 VName0O01 3/15/1998 Network Failures Hardware Dell Server Disabled High Dell Upgrade;RebocV3.2.4; V3.2,5; V3.4,V5.3.1
Vuln002 VName002 4/5/2021 Performance Impact Software Windows Office Degraded Medium Microsoft Upgrade A-3-4; C-2-5; D-2-1-3a
Vuln003 VName003 9/23/2020 Static on external connCom Phone Systems ~ Degraded Low Photonix Install V5.3.1;V2.4.1;v8.3.1
Vuln004 VName004 3/6/2001 Reduced Power Outpu Infra Power Generator Degraded Medium Powerwerx Replace C6;C2;C3
Vuln005 VName005 5/10/2020 Device access disabled Hardware Dell Server Disabled High Dell Install;Reboot V3.4;V5.3.1
Vuln006 VName006 8/12/2019 Faulty oputput voltage Infra Power Generator Disabled High Powerwerx Replace C2;C5
Vuln007 VName007 7/25/2004 Network Failures Software ~ Windows Office Disabled Medium Microsoft Upgrade A-3-4; C-2.6; D-2-1-3a
Vuln008 VName008 7/10/2005 Performance Impact Software Unix OS Degraded Low IBM Upgrade;RebocU4.2;U4.1;U5.8
Vuln009 VName009 9/3/2010 Network Failures Hardware |BM Server Disabled Medium [BM Upgrade;RebocH9.3;H8.2

Vuln010 VName010 10/4/2014 Voice stream interrupt Com Phone Systems Degraded Low Photonix Replace C3,C5
—

O @ NV AR WM =

Vulnerability 001 and 002 require an
Upgrade. 001 also requires a Reboot, etc.

==
- o

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Combined Master Graph

Data Center, Assets, and Vulnerability Subgraphs
The Master Graph contains all three subgraphs,

and describes the Data Centers, Assets, and
Vulnerabilities.

Assets (in Blue) are not connected to
Vulnerabilities (in Gold) as shown in the Master
Graph and the following Cypher Query.

Show Asset-Vulnerability Connections

VName003

The underlying data sources have no such
connections.

VName001

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Merging Vulnerability and Assets

Merged Vulnerabilities and Assets

Standard Cypher, the language of
, ~— ey graphs, as shown below, can be used
oy - : to bind these entities together. The
‘ | _ / Bloom interface also provides this
capability.

V241

Merge Vulnerabilities and Affected Assets Together

Select matching nodes and build relationships

7 L) match (v:Vulnerability)-[gt:goesTo]->(ve:Versions), (a:Asset)
Vhame00s | Y~ where a.Versions = ve.Versions and v.DeviceType = a.DeviceType
= \ ’ merge (a)-[:affectedBy]->(ve)

H9.3

VName00T

We can also see that some Assets,
A330, B800, and B900 for example,
are not bound in our Data Sets to a
Data Center.

This rogue assets might require
further exploration.

VName010

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Introduction to Cypher Patterns

Understanding Patterns ASCII Art

@ A Node has a Relationship to Another Node

(node) — [relationship] — (node)

(node) - [Relationship] - (node)

N v

(:Label {Property}) [Relationship] (:Label {Property})

¥ b Y

(el:Employee{name:"ray"}) [r1:worksWith] (e2:Employee{name:"steve"})

(el:Employee{name:"ray"}) [r1:worksWith] (e2:Employee{name:"steve"})

(el:Employee{name:"ray"}) [r2:isAMemberOf] (g1:Group{name:"research"})

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Generated Cypher Code

Load Nodes and Linkages Mechanism

:auto USING PERIODIC COMMIT 300 with headers from

"file:///dataSet.csv" dataSetRow

with dataSetRowﬁ’

c?For‘Each(_ In Case When ((dataSetRow.dataCenterColName Is not Null)) Then [1] Else [] End|

Merge (dataCenterInstance:DataCenter{name:"DataCenter"”,
dataCenterID:trim(dataSetRow.datacenter_id derived)})

set dataCenterInstance.nType = trim("State")(>

ForEach(_ In Case When ((dataSetRow.ServerID Is not Null)) Then [1] Else [] End|

Merge (serverlInstance:Server{name:"Server", ServerID:trim(dataSetRow.ServerlID)})
set serverlInstance.macaddress = trim(dataSetRow.macAddress)

" set serverInstance.dnsname = trim(dataSetRow.dnsname)
set serverlInstance.nType = trim("State")

merge (dataCenterInstance)-[dataCenterToServerLink:contains]->(serverInstance)

) //end For ((dataSetRow.ServerID Is not Null)) command

c>) //end For ((dataSetRow.dataCenterColName Is not Null)) command

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

Generated Cypher Code

Multifield Mechanism

:auto USING PERIODIC COMMIT 300 load csv with headers from "file:///newVersion.csv" as osRow
with osRow

@ ForEach(_ In Case When ((osRow.ServerID Is not Null)) Then [1] Else [] End|
Merge (serverInstance:Server{name:"Server", ServerID:trim(dataSetRow.ServerID)})

ForEach(_ In Case When (osRow.os is not null) Then [1] Else [] End|
Q)J;orEach(osItem in split(osRow.os, ';') Then [1] Else [] End]|

ForEach(_ IN CASE WHEN (osItem <> '') Then [1] Else [] End|

merge (osInstance:0S{name:"0S", operSys:trim(osItem)})
set osInstance.nType = trim("Index")
merge (serverInstance)-[:isA]->(osInstance)

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914

MITRE

MITRE Labs inspires breakthroughs in applied science
and advanced technology to transform the future of
U.S. scientific and economic leadership. Our goal:
Deliver disruptive innovation to support our mission
of solving problems for a safer world.

Please feel free to contact me with any questions

Thank You

Ray Lukas ()
Jim Lockett ()

rlukas@MITRE.org

32
Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-2914 ©2022 The MITRE Corporation. ALL RIGHTS RESERVED.

