

VIRGINIA

WASHINGTON DC

VIRTUA

NOV. 2-4 2021

WRT-1033: Methods to Evaluate Cost/Technical Risk Opportunity Decisions for Security Assurance in Design

Tom McDermott (Stevens), Peter Beling (Va Tech)

Tim Sherburne, Ian Roessle, Stephen Adams (VT); Megan Clifford (Stevens)

Sponsor: OUSD(R&E)

ANNUAL SPONSOR RESEARCH REVIEW

Agenda

- Motivation
- Project Scope
- Outreach
- Mission Engineering
- Dynamic Simulation
- Formal Assurance
- Silverfish Case Study

TUTORIALS

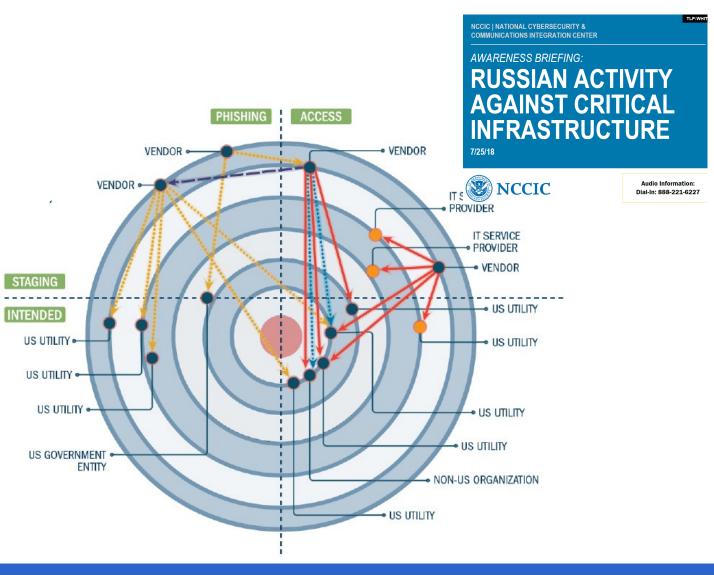
DIGITAL ENGINEERING TUTORIAL Dr. Mark Blackburn – Stevens Institute of Technology

Skyzer Surrogate Pilot Overview and MBSE

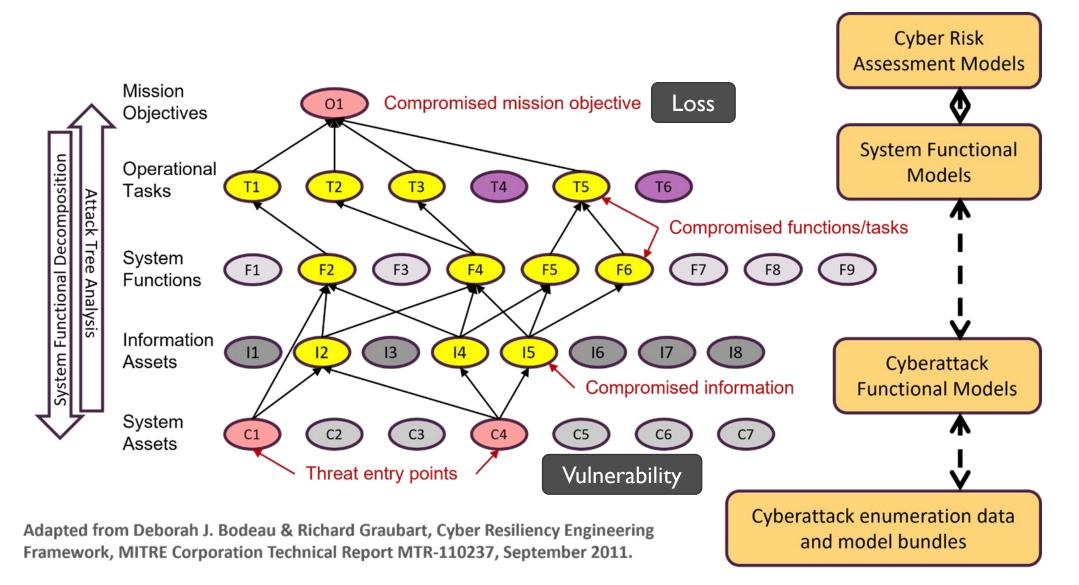
 Cost Model Use Case with Model Tour Demonstration

SECURITY ENGINEERING TUTORIAL Dr. Peter Beling - Virginia Tech

SERC Systems and Cyber Resilience Modeling

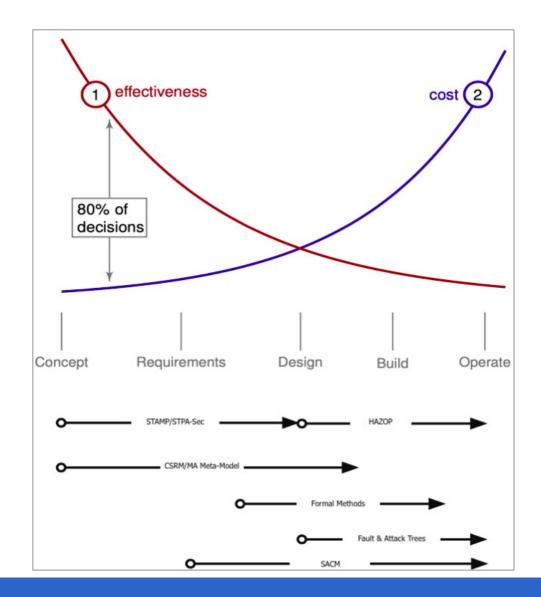


Motivation: Advanced Persistent Threat in Critical Systems

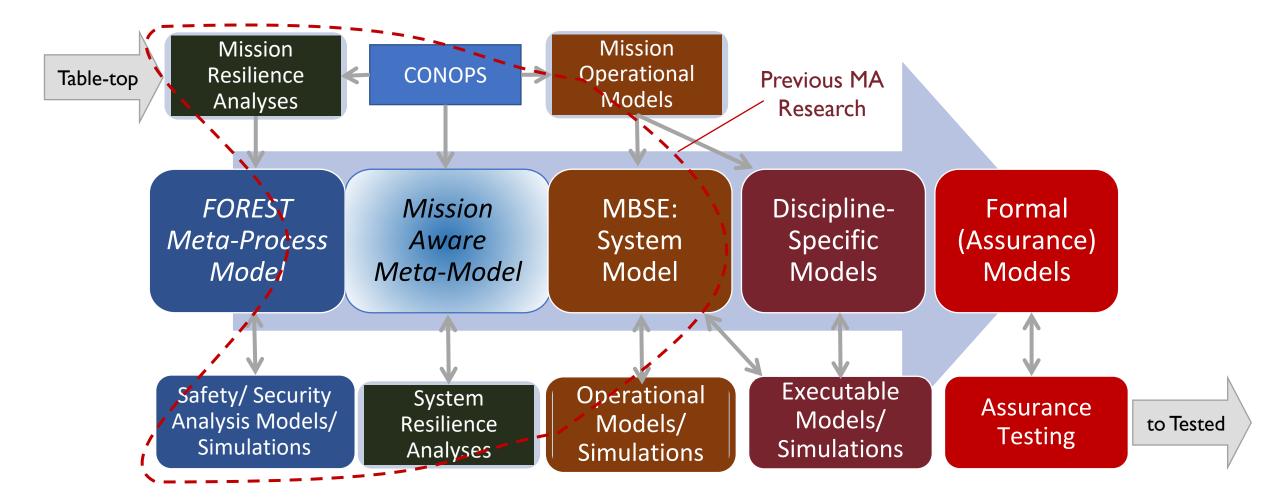

- Social Engineering
 - Research, data harvesting
- Physical Engineering
 - Components, network ops
- Vulnerabilities
 - Zero day
- Attacks
 - Exploits,

prioritized loss scenarios

- Execute outcomes
 - Lack of predictive models
- Resilience
 - Design-in, test-in
 - Performance measures

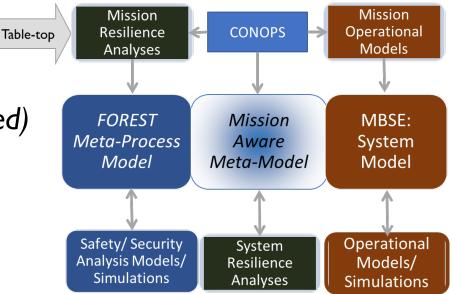


Functional Modeling in Cyber Resilience Engineering

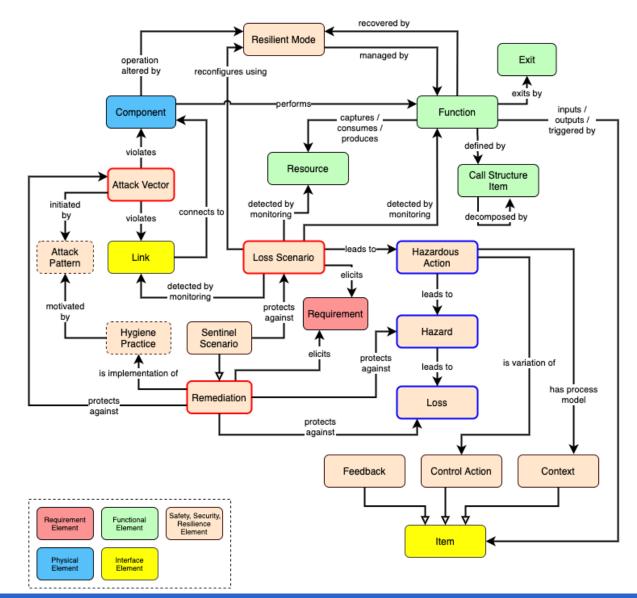


Approach: Resilience and Assurance Methodologies – full System Life Cycle

- Need rigorous methods and tools usable in all stages of the SE process
 - From Mission Engineering to Developmental & Operational Test
- Earlier focus on loss causation and resilience
- Later focus on risk management and assurance
- Continuous evaluation of assurance-related quality attributes



Project Scope



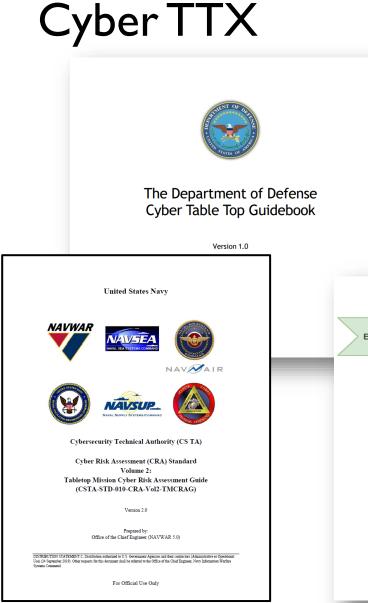
Mission Engineering

- The research shall:
 - Conduct a thorough analysis of the current Meta-Model and understand where levels are underserved by the data and information obtainable within the community to address specific **mission engineering** system capability needs.
 - Development of FOREST & TREEs
 - Standardized model relationships
 - Integration of Cyber Survivability Attributes
 - Integration into cyber "table-tops" (experience needed)
 - Dissemination in tutorial form
 - Transition to DAU training

Mission Aware Meta-Model: Necessary Information

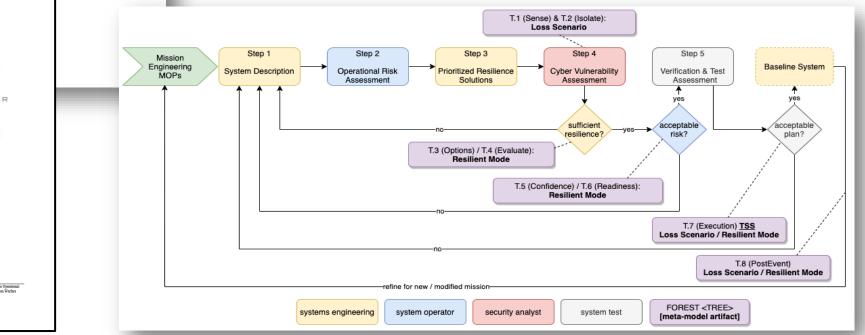
MISSION AWARE

CSRM Steps & Associated Meta-Model Entities:


1. System Description (Mission, Architecture, Behavior)

- Use Case / Requirement
- Component, Link
- Function, Exit, Resource, Control-Action, Feedback, Context, Call Structure Item
- 2. Operational Risk Assessment
 - Loss, Hazard, Hazardous Action
- 3. Prioritized Resilience Solutions
 - Resilient Mode
- 4. Cyber Vulnerabilities Assessment
 - Loss-Scenario, Remediation, Elicited Requirements

Typically determined in cyber table-top exercises (TTX)


3 November 2021

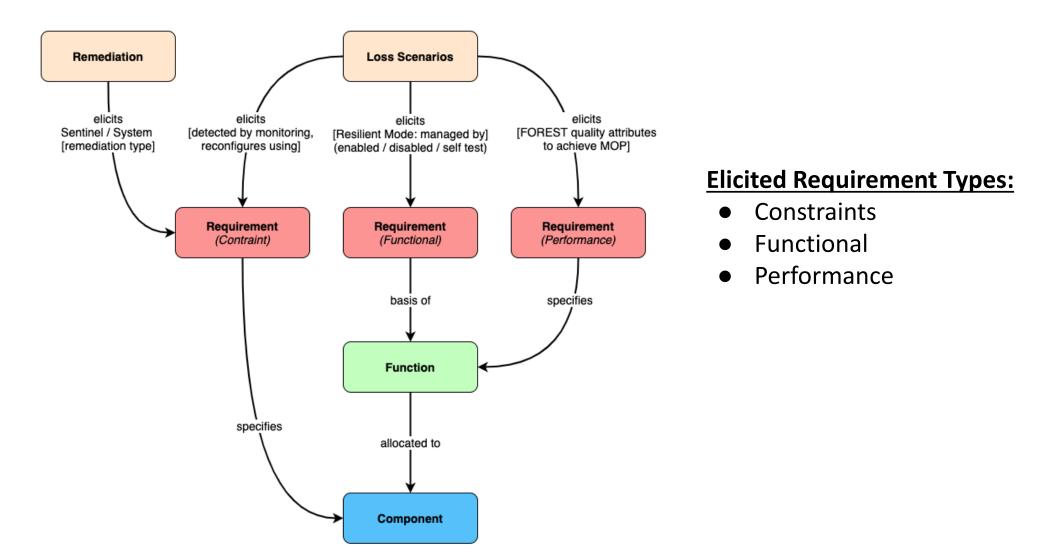
Systems Engineering Research Center

Issues:

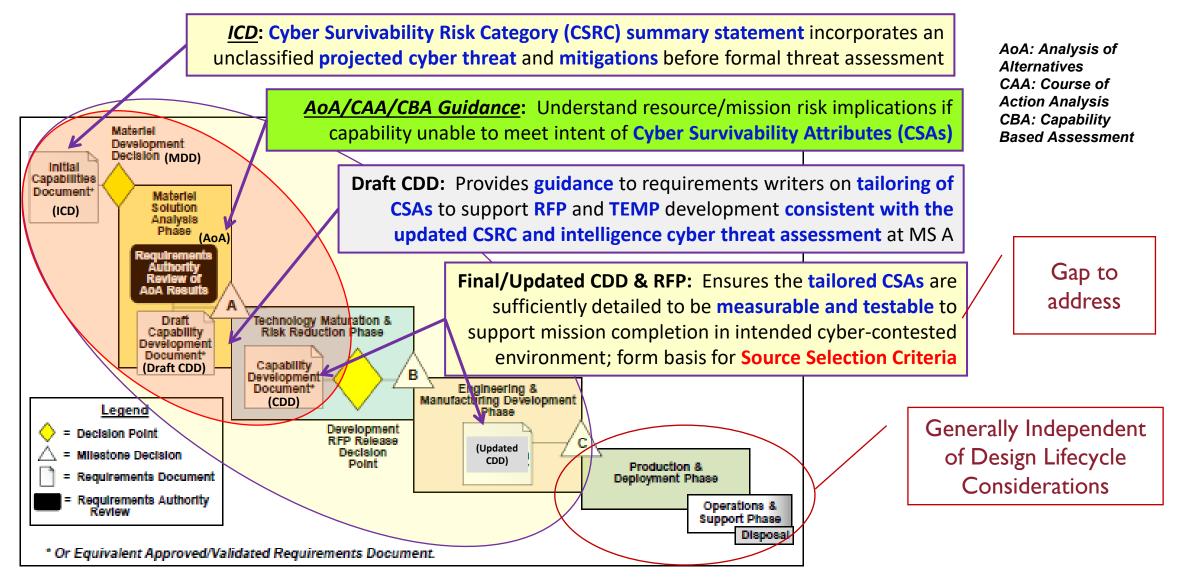
- Identifying definitive system information/ architecture
- Timely and relevant intelligence community support
- Finding the right people
- Need to be doing much earlier in engineering V

Example Cyber Vulnerability Assessment

Remediation	is implementation of: Hygiene Practice	protects against: Attack Vector SF.CAPEC.122:Privilege Abuse		
REM.CH.MON.1:Forensic Logging	CPP.LO.1:Log, audit, or monitor systems			
REM.CH.PRO.1:Deployment Account	CPP.AC.1:Eliminate Default Access CPP.AC.2:Physical or Procedural Access CPP.AC.3:Require Authentication CPP.AD.1:Minimize administrative privileges CPP.UI.1:Unique Identifiers	SF.CAPEC.122:Privilege Abuse		
REM.RES.DEF.1:Link encryption	CPP.BD.1:Control and protect information	LS.1:Manipulated Fire Command LS.2:Situational Injection RR.CAPEC.94:Radio Relay Man in the Middle RR.CAPEC.117:Radio Relay Interception		
REM.RES.DEF.2:Voice only command and control		CC.CAPEC.607:Command and Control Jam- ming		
REM.RES.DEF.3:Sentinel: Field - OBS: Mea- sured Boot	CPP.CM.1:Manage configurations	LS.4:Tampered Deployment		
	CPP.CM.3:Constrain installation	OBS.CAPEC.439.CONFIG:Obstacle Configu- ration Modification during Distribution		
	CPP.SI.1:Inventory software	OBS.CAPEC.439.MALWARE:Obstacle Mal- ware during Distribution		
	CPP.VU.1:Vulnerability detection	OBS.CAPEC.439.SW:Obstacle Software Modification during Distribution		
REM.RES.DR.1:Sentinel: Vehicle - Weapon Mis-Fire		FC.CAPEC.438:Fire Control Modification during Manufacture		
		LS.1:Manipulated Fire Command		
REM.RES.DR.2:Sentinel: Vehicle - Weapon Delay Fire		FC.CAPEC.438:Fire Control Modification during Manufacture		
		LS.5:Delayed Fire Command		
REM.RES.DR.3:Sentinel: Field - Situational Delay		IR.CAPEC.438:IR Modification during Manu- facture		
		LS.3:Situational Delay		
REM.RES.DR.4:Sentinel: Field - Situational Injection		LS.2:Situational Injection		
		RR.CAPEC.594:Radio Relay Injection		


Remediation Types:

- Hygiene Practice
- Diverse Redundancy
- Defensive / Hardening


Silverfish Example Loss Scenarios

Loss Scenario	leads to: Hazardous Action	reconfigures using: Resilient Mode		
LS.1:Manipulated Fire Command	HCA.1:Incorrect Fire	RM.2:Diverse Redundant Fire Control		
LS.2:Situational Injection	HCA.2:No Fire	RM.1:Diverse Redundant Radio Relay		
LS.3:Situational Delay	HCA.2:No Fire	RM.1:Diverse Redundant Radio Relay		
		RM.3:Diverse Redundant IR Sensors		
		RM.5:Operator Reposition		
LS.4:Tampered Deployment	HCA.3:Unable to set Location	RM.4:Obstacle Restore		
LS.5:Delayed Fire Command	HCA.2:No Fire			

Metamodel: Elicited Requirements

Cyber Survivability Engineering (Steve Pitcher J-6)

CSA Top-Level Requirements

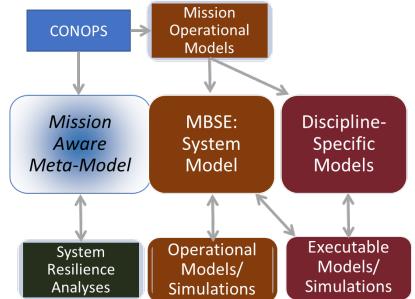
КРР	CSA Number	Description
Prevent	CSA-01	Control Access
	CSA-02	Reduce System's Cyber Detectability
	CSA-03	Secure Transmissions and Communications
	CSA-04	Protect System's Information from Exploitation
	CSA-05	Partition and Ensure Critical Functions at Mission Completion Per- formance Levels
	CSA-06	Minimize and Harden Attack Surfaces
Mitigate	ate CSA-07 Baseline and Monitor Systems and Detect Anomalies	
	CSA-08	Manage System Performance if Degrated by Cyber Events
Recover	CSA-09	Recover System Capabilities
Adapt	ot CSA-10 Actively Manage System's Configuration to Achieve and Maintair Operationally Relevant Cyber Survivability Risk Posture (CSRP)	

*MITRE, Relationships Between Cyber Resiliency Constructs and Cyber Survivability Attributes (CSA), 2019

	CSA	Req Number	Description		
	CSA-07	CSA.07.1	The system shall monitor operational parameters, boundaries, and configura- tion controls.		
		CSA.07.2	The system shall analyze performance through a baseline comparison to detect anomalies and attacks.		
		CSA.07.3	The system shall generate and store logs.		
	CSA-08	CSA.08.1	The system shall alert users of detected anomalies and attacks.		
		CSA.08.2	The system shall provide capabilities to shed non-mission-critical functions, systems/sub-systems, and interfaces.		
		CSA.08.3	The system shall maintain mission-critical functions in a cyber contested oper- ational environment during/after observed anomaly(ies).		
>		CSA.08.4	The system shall maintain safety-critical functions in a cyber contested opera- tional environment during/after observed anomaly(ies).		
		CSA.08.5	The system shall fail secure when mission-critical functions are no longer oper- ational in a contested environment.		
		CSA.08.6	The system shall maintain flight-critical functions in a cyber contested opera- tional environment during/after observed anomaly(ies).		
	CSA-09	CSA.09.1	The system shall provide the capability to recover to a known state in near real time.		
	CSA-10	CSA.10.1	The system shall have the capability to update scans to ensure appropriate, applicable requirements are captured (e.g. STIGS, SRG, etc.) for: (a) hardware (b) software (c) firmware		
		CSA-10.2	Actively manage System's Configurations to achieve and maintain an Opera- tionally Relevent Cyber Survivability Risk Posture (CSRP).		

Example Elicited Requirements - System

equirement	Туре	elicited by: LS
F.600.1:Silverfish shall provide fire control action monitor.	Constraint	LS.1:Manipulated Fire Command
F.600.2:Silverfish shall provide fire control timing monitor.	Constraint	LS.5:Delayed Fire Command
SF.600.3:Silverfish shall provide situational sensor report consistency monitor.	Constraint	LS.2:Situational Injection
5F.600.4:Silverfish shall provide situational sensor report iming monitor.	Constraint	LS.3:Situational Delay
F.600.5:Silverfish shall provide measured boot monitor.	Constraint	LS.4:Tampered Deployment
5F.600.10:Silverfish shall provide component self test op- erations.	Functional	LS.1:Manipulated Fire Command
		LS.2:Situational Injection
		LS.3:Situational Delay
		LS.4:Tampered Deployment
		LS.5:Delayed Fire Command
5F.600.11:Silverfish shall provide fire control redundancy nanagement controls.	Functional	LS.1:Manipulated Fire Command
		LS.5:Delayed Fire Command
F.600.12:Silverfish shall provide fire control self test oper- ttions.	Functional	LS.1:Manipulated Fire Command
		LS.5:Delayed Fire Command
SF.600.13:Silverfish shall provide IR sensor redundancy nanagement controls.	Functional	LS.2:Situational Injection
		LS.3:Situational Delay
5F.600.14:Silverfish shall provide obstacle restore manage- nent controls.	Functional	LS.4:Tampered Deployment
F.600.15:Silverfish shall provide radio relay redundancy nanagement controls.	Functional	LS.2:Situational Injection
		LS.3:Situational Delay
		LS.5:Delayed Fire Command
F.600.16:Silverfish shall provide situational aware self test	Functional	LS.2:Situational Injection


Elicited System Requirement Sources:

- Loss Scenarios
 - Enable Sensing / Isolation by Sentinel
 - Associated Resilient Mode Management (enable / disable / self-test)
- Remediation
 - Provides Sentinel for protection against Loss Scenario

Remediation	protects against: LS/AV	elicits: Requirement		
REM.RES.DR.1:Sentinel: Vehicle - Weapon Mis-Fire	FC.CAPEC.438:Fire Control Modification during Manufacture	MA.100.1.1:The vehicle Sentinel shall pro tect against manipulated fire commands.		
	LS.1:Manipulated Fire Command			
REM.RES.DR.2:Sentinel: Vehicle - Weapon	FC.CAPEC.438:Fire Control Modification	MA.100.1.2:The vehicle Sentinel shall pro-		
Delay Fire	during Manufacture	tect against delayed fire.		
	LS.5:Delayed Fire Command			
REM.RES.DR.3:Sentinel: Field - Situational Delay	IR.CAPEC.438:IR Modification during Manu- facture	MA.100.2.2:The field Sentinel shall protect against situational delay.		
	LS.3:Situational Delay			
REM.RES.DR.4:Sentinel: Field - Situational Injection	LS.2:Situational Injection	MA.100.2.1:The field Sentinel shall protect against situational injection.		
	RR.CAPEC.594:Radio Relay Injection			

Dynamic Simulations

- The research shall:
 - Work with Meta-Model to initiate a framework for **patterns**: system models and threat models to produce scalable graph structures for system analysis.
 - Extended the MA meta-model to support specification of simulation constructs
 - Developed an extensive set of MA resilience metrics - demonstrated in the Silverfish model
 - Standardized resilience patterns
 - MBSE tools still lack necessary integration with event-driven and activity-based simulation tools

Example System Behavior (Functions) via Control Structure

System Function	Description	decomposed by: Function	triggered by: Control Action
F.4.10:SF: Fire	Select and fire one or more munitions for one or more obstacles.	F.4.10.1:CS: Input Fire Muni- tion Command	OP.1.1:OP: CA: L1-Fire
		F.4.10.2:RR: Transfer Fire Mu- nition Command	
		F.4.10.3:OBS: Initiate Fire Munition	
F.4.10.1:CS: Input Fire Muni- tion Command	Process operator input to fire one or more munitions for one or more obstacles, man- age munition fire state, and wireless trans- mit fire command to selected munitions.		OP.1.1.1:CS: L2-Operator Fire Control Action
F.4.10.2:RR: Transfer Fire Mu- nition Command	Wirelessly transfer munition fire commands from control station to obstacles.		OP.1.1.2:RR: L2-Transfer Fire Control Action
F.4.10.3:OBS: Initiate Fire Munition	Detonate selected mentions and update munition state to fired.		OP.1.1.3:OBS: L2-Initiate Fire Control Action
F.4.13:SF: Monitor Field	Monitor field for physical attackers (human or vehicle) by fusing UAV, IR, Acoustic and Seismic sensor analytics.	F.4.13.1:UAV: Report UAV An- alytics	F.1.1:F: FB: L1-Sensor Signa- ture
		F.4.13.2:LAN: Transfer UAV Analytics	
		F.4.13.3:IR: Report IR Analyt- ics	
		F.4.13.4:OBS: Report Acous- tic & Seismic Analytics	
		F.4.13.5:RR: Transfer Acous- tic & Seismic & IR Analytics	
		F.4.13.6:CS: Perform Situa- tional Fusion	
F.4.13.1:UAV: Report UAV An- alytics	Periodically report UAV sensor analytics.		F.1.1.6:UAV: Sensor Feed- back
F.4.13.2:LAN: Transfer UAV Analytics	In vehicle transfer of sensor data.		F.1.1.3:LAN: Sensor Transfer Feedback
F.4.13.3:IR: Report IR Analyt- ics	Periodically report IR sensor analytics.		F.1.1.2:IR: Sensor Feedback
F.4.13.4:OBS: Report Acous- tic & Seismic Analytics	Periodically report Obstacle sensor analyt- ics.		F.1.1.4:OBS: Sensor Feedback
F.4.13.5:RR: Transfer Acous- tic & Seismic & IR Analytics	Wirelessly transfer sensor data.		F.1.1.5:RR: Sensor Transfer Feedback
FA 12 C.CC. Darform Citua	Fuce concer data into an integrated citua		F1111.CC. Cancar Faadbaak

3 November 2021

Simulation – Fault Injection

Mission Aware Monitor Design Pattern	MBSE Fault Injection Simulation Technique		
Resource Introspection (cpu, battery, queue depth, etc.)	Attacker - consumes / produces Resource	_	
Information Exchange Delay	Attacker - modifies <i>Link</i> capacity / delay		
Parameter Modification	Attacker - modifies data store Item		Resilience Evaluation
Changing Control Action (modify / drop / inject)	Attacker - modifies input/output Item		Scenarios
Changing Feedback (modify / drop / inject)	Attacker - modifies input/output Item		
Behavior Timing (speedup, slowdown)	Attacker - modifies Function execution / timeout duration		
Illogical Behavior	Attacker - modifies Function exit path probability	-	

• Issues:

- Limited simulation capability within existing MBSE tools
- Interoperability with dynamic simulation tools

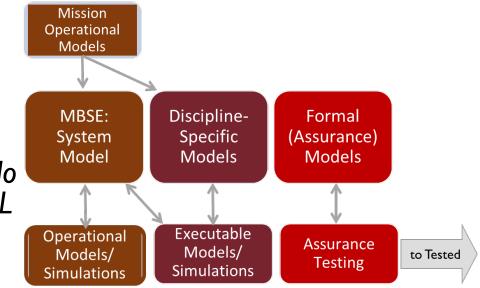
Meta Model Extension – Functional Simulation

		transferred by	- Item	inputs / outputs / triggered by		Element	Entity	Description
,		Abstract Architectur	re	performs		Physical	Component	A component is an abstract term that represents the physical or log- ical entity that performs a specific function or functions.
	Link	Connected to	Component realized by	captures / consumes / produces	Function	1	Real Component	A component that realizes an abstract physical entity with a known manufacturer & part number that performs a specific function or functions. Performance characteristics may vary be- tween different realizations (manufactures) of real components.
	Real Link	Real Architecture Manufacturer Part # 	Real Component	Resource	captures / <simulatio produces instantiates (n</simulatio 		Link	A link is the abstract physical implementation of an interface that connects Components
transferred by	·····	connected to		deployed as	Call Struct Item (Para		Real Link	A physical link that realizes an abstract link and connects Real Components.
	deployed as	Deployed Real Archite Instance Id / Name			defines		Item	An item represent flows within and between functions. An item is an input to or an output from a function.
N.		Location	owns	Resource		Functional	Function	A function is a transformation that accepts one or more inputs (items) and transforms them into outputs (items).
````	Link		Component	performs			Call Structure Item	Recursive call structure, for example, select, parallel, loop, for each function.
	► Instance	connected to {segment hi-to-low I segment low-to-high}	Instance	Deployed Resilience M	Metrics		Exit	An exit identifies a possible path to follow when a processing unit completes.
	decomposes {channel I segme segment-order	ent,	operation altered by		vides		Resource	A resource is an element, for example, power, MIPS, interceptors, that the system uses, captures, or generates while it is operating.
				Loss Scenario Instance	uration for	Deployme	nt Component Instance	An instance of a real component with a name & serial number, deployed at a specific location.
	```			· · · · · · · · · · · · · · · · · · ·			Link Instance	An instance of a real link which connects deployed components.
		Functional Element Safety, Security	y. Deployment				Resource Instance	An instance of a resource that is owned by a deployed component.
		Element	Element					

Interface Element

Physical Element Verification

Element

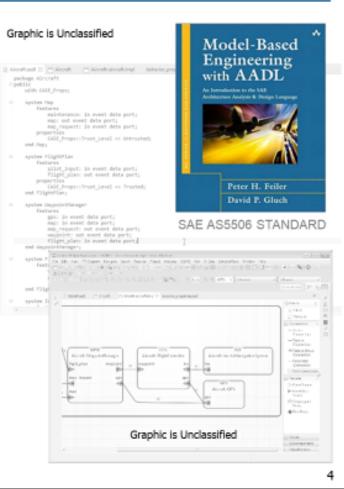

.....

Programatic

Element

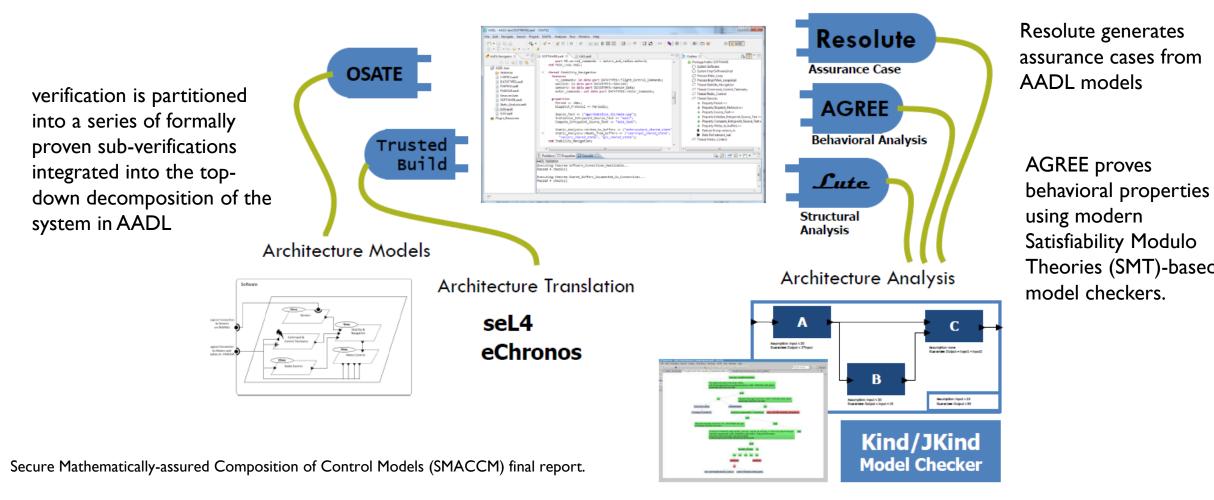
Formal Models and Assurance Testing

- The research shall:
 - Connect MA MBSE Meta-Model to Army/DARPA research on formal modeling and validation of computer information flows and software code execution.
 - Connection remains primarily a manual process
 - Conversion of functional system view to structural software simulation difficult to support in existing tools
 - Core features of MA Metamodel controller architecture and behavioral (activity) diagrams – do not translate easily between SysML tools and AADL
 - Gap remains in behavioral-structural specification and assurance testing
 - Sentinel functions (at least) and resilient modes should use assured design approaches



Cyber Assured Systems Engineering (CASE)

(U) CASE Tool Capabilities


- (CUI) Adversarial analysis of system architecture to **derive** requirements for cyber-resiliency
- (U) Integrated model-based systems engineering tool suite based on Architecture Analysis & Design Language (AADL) models
- (U) Transform system design to satisfy cyber-resiliency requirements
- (U) Generate new high-assurance components from formal specifications
- (U) Verify system design using **formal methods** and document evidence/compliance with assurance case
- (U) Generate software integration code directly from verified architecture models, targeting multiple operating systems (including seL4)

Distribution A. Approved for public release: distribution unlimited.

DARPA HACMS/CASE Program Toolset

The approach is based on the use of formal assume-guarantee contracts

Questions?