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Motivation: Digital Twins

Definition (2000 – today)

data

 Military Drone (Physical) System

actions

Digital Twin (Cyber)

data

data

Many Application Domains

• Virtual representation of a physical object or system that operates across the 
system lifecycle (not just front end).

• NASA, manufacturing processes, building operations, personalized medicine, 
smart cities, among others.

• Mirror implementation of physical world through real-time-monitoring and 
synchronization of data with events.

• Provide algorithms and software for observation, reasoning and physical 
systems control.

?
Required Functionality
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Importance and Timeliness (Why?)

Business Drivers (Why this project is timely?)

Siemens, IBM, now see Digital Twin Era as the successor to MBSE with SysML

• AI and ML will be deeply embedded in new software and algorithms.

Digital Twin Era (Business Spin)

• New methods and tools for model-centric engineering.
• New operating system environments for observation, reasoning and physical 

systems control.
• Superior levels of system performance, agility, economy, etc.

Technical Implementation (2020, Google, Apple, Amazon, Siemens, IBM … )



AI4SE/SE4AI October 28 & 29, 2020 4

Proposed Approach (Why?)

Definition of AI and ML

• AI: Knowledge representation and reasoning with ontologies and rules. 
Construction of semantic graphs, executable event-based processing, 
multi-domain reasoning.

• ML: Modern neural networks (closely related to signal processing of data 
streams). Data Mining. Input-to-output prediction, Learn structure and 
sequence. Identify objects, events, anomalies. Remember stuff.

AI/ML Strengths and Weaknesses

State-of-the-art AI and ML technologies are fragmented in their capability:

• AI provides a broad view of concepts needed for reasoning. Decision 
making processes are transparent; semantic graphs are flexible.

• Semantic reasoning is decision making in-the-moment (no memory).
• Data mining algorithms can organize information from large data sources.
• ML procedures developed to solve very specific tasks.
• ML decision making procedures lack transparency.  
• ML procedures can identify anomalies (events) in streams of data.
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Proposed Approach (What’s New?) 

• Explore design of digital twin architectures that support AI and ML formalisms 
working side-by-side as a team.

• How to design digital twin elements and their interactions to support: (1) 
methods and tools for model-centric engineering, and (2) digital twin operating 
system environments for observation, reasoning, control.

data

 Military Drone (Physical) System

actions

Digital Twin (Cyber)

Semantic
Modeling

Machine
Learning

Knowledge Representation

DRONE OPERATING SYSTEM

Reasoning
data

Remember
Identify Objects, Events
Learn Structure and Sequence

data

Key Research Challenge

Project Success (What does it look like?)

• Knowledge to guide architectural development of future digital twins 
enabled by AI / ML technology.

Digital Twins (What’s New?)
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Digital Twins à Digital Threads (What?)

Cradle-to-Grave Lifecycle Support (Digital Threads) 

Observation: A lot of model-centric engineering boils down to representation of 
systems as graphs and sequences of graph transformations punctuated by 
decision making and work / actions.

Reasonable Starting Point: Understand the range of possibilities for which 
machine learning of graphs and their attributes support and enhance activities in 
model-centric engineering and systems operation.
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1. Identify neural network architectures 
and strategies of learning for variety 
of graph structures and their 
attributes.

2. Exercise machine architecture and 
strategies of learning on case study 
problems:  

3. Briefly show Maria’s applications: 
water distribution system and urban 
metrorail system.

4. Explore the effects of graph size on 
learning performance.

Presentation Objectives
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Digital Twin Architecture

relationships.

Data Source A

Data Source B

Ontology A

Ontology B

Rules A

Rules B

import

import visit

visit

Data Models / Sources
DomainïSpecific

Rules
Domain

design flow
Ontology classes
and properties

design flow

Multiïdomain Semantic Modeling

ontologies
refinement ofrefinement of

rules

Machine Learning / Data Mining

Classification Clustering Association

decision tree Group A

Group B

Group A

implies

Group B

ontologies
domain

data
domain 

Domain B

Domain A

Semantic Feature Engineering

1

2

3

4
1

5

2

8

WeightedDirected Undirected

Teaching Machines to Understand Graphs

Predictions: graph nodes and labels, dependency

• Business Drivers
• Post Incubator Project
• Real-World Considerations
• Step 1: Multi-Domain Semantic 

Modeling
• Step 2: Semantic Modeling + 

Data Mining
• Step 3: Teaching Machines to 

Understand Graphs
• Opportunities and Extensions
• Plan of Work

So what will the machine 
learning do?
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Presentation Objectives

relationships.

Data Source A

Data Source B

Ontology A

Ontology B

Rules A

Rules B

import

import visit

visit

Data Models / Sources
DomainïSpecific

Rules
Domain

design flow
Ontology classes
and properties

design flow

Multiïdomain Semantic Modeling

ontologies
refinement ofrefinement of

rules

Machine Learning / Data Mining

Classification Clustering Association

decision tree Group A

Group B

Group A
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Group B

ontologies
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data
domain 
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Domain A

Semantic Feature Engineering

1
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8

WeightedDirected Undirected

Teaching Machines to Understand Graphs

Predictions: graph nodes and labels, dependency

Observation: A lot of model-centric 
engineering boils down to representation 
of systems as graphs and sequences of 
graph transformations punctuated by 
decision making and work / actions.

Hence: Explore opportunities for training 
machines to understand graphs.

Focus on Machine Learning of Graphs and Model-Centric Engineering.

Autoencoder

encoder

decoder

minimize 

loss

[ ï2.0, 0.5, 1.0 ..... ï0.5 ] representation vector
lowerïdimensional

decompress

Input: System graph topology and attributes

Output: reconstruction of system graph

compress
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Algorithms that use statistics to learn patterns and hidden insights in data 
without being explicitly programmed for it.

Machine Learning
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• Traditional approaches to graph 
modeling employ adjacency 
matrices. 

• Topology properties can then 
be extracted through graph 
analysis tasks: 
ØConnectivity analysis, traceability 

analysis, cycle detection, shortest 
path identification, etc.

Graphs and Graph Analysis

Traditional Approach to Graph Analysis

A graph is defined as G = (V, E), where V is a set of vertices (i.e. nodes), 
E = set of edges, and each edge is formed from pair of distinct vertices in V.



AI4SE/SE4AI October 28 & 29, 2020 12

• Adjacency matrices suffer from data sparsity, high-dimensionality, and a 
lack of support for capturing graph attributes.

• Surge in graph embedding approaches.

• Output vectors are statistical, should be interpreted as graph analytics.

• Learned embeddings could advance various downstream learning tasks:
Ø Node Classification
Ø Node Clustering
Ø Anomaly Prediction
Ø Attribute Prediction
Ø Link Prediction
Ø Recommendation
Ø Etc.

Captures 
graph 

attributes

Graph Analytics

Machine Learning Approach to Graph Analytics
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Preliminary Research  at UMD, 2019-2020

Graph AutoEncoder Approach
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Deep neural network architectures trained to reconstruct their original 
graph input.

Graph AutoEncoders (GAE)

Common Graph Topologies
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Extract topological 
and attribute
information

Weighted 
Cross-Entropy

Loss

update

𝒁 = 𝐴𝑋𝑊

ENCODER

minimize
loss of 
information

𝑨′ = 𝜎 𝑍!𝑍

DECODER

ADAM OPTIMIZER

𝑿

𝑨

𝑾

Input Graph Output Graph

Graph AutoEncoders (GAE)

Mathematical Procedure: Designed to ensure numerical 
optimization will converge (play nicely).
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𝒁 = 𝐴𝑋𝑊

ENCODER

𝑨′ = 𝜎 𝑍!𝑍

DECODER

Input Graph Output Graph
Number of embedding layer neurons = 74
Minimum Loss = 0.00196
Input/Output isomorphism = True

AutoEncoding an Urban Graph 
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• Explored different architectures 
and their effect on reconstruction 
accuracy.

• Window of convergence where 
good reconstruction can be 
achieved.

• Need to understand neural 
network architectural 
requirements for accurate 
reconstruction of graph 
structures.

Experiments with Graph AutoEncoder

Key Takeaways: Mathematical procedures for graph learning 
with autoencoders work, but only over a limited range.  Are 
the underlying algorithmic assumptions really needed? Can 
we improve the whole process?
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Recent Research  at UMD, 2021

Frame Graph Learning as a Binary 
Classification Problem
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• Learning the structure of a graph can be framed as a binary 
classification problem. 

• If a connection between nodes exists → output 1. 

• If a connection between nodes does not exists → output 0.

?

?

?

??

?

0

1

1

0
0

1

Learning Graph Structure
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Classic Binary Classification Problem

Binary Classification (XOR Problem)
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Topology:

𝐴 = 0 1
1 0

Architecture: 

x y

Classic Binary Classification Problem

Trivial Implementation in TensorFlow
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One Region
ØOne Hidden Layer
ØHidden Layer Size = number of 

hyperplanes required to form 
region

ØOutput neuron

Many Regions
Ø Two Hidden Layers
ØHidden Layer 1 Size = number of 

hyperplanes required to form 
regions

ØHidden Layer 2 Size = number of 
regions

ØOutput neuron

Source: Lippmann, R., 1987

Neural Network Architecture for Classification
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Topology:

𝐴 =

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

Architecture:

x y

Directed Line Problem (One Region)
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Topology:

𝐴 =

0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

Architecture:

x y

Line Problem (Multiple Regions)
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Topology:

𝐴 =

0 0 1 1 1 1
0 0 0 0 1 1
1 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0

Architecture: 

2

4

5 6

3

1

x y

Graph Mesh Problem 
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Topology:

𝐴 =

0 1 1 0 0 1
1 0 1 0 0 0
1 1 0 1 1 0
0 0 1 0 0 0
0 0 1 0 0 1
1 0 0 0 1 0

Architecture: 

Visually hard to determine required architecture, need for matrix reordering approach. 

1

2

3 4

5

6

Graph Mesh Problem 

Matrix Reordering: Automation to Reveal Visual Patterns

Block Pattern Off-diagonal 
Block Pattern

Line/Star 
Pattern

Bands Pattern Noise
Anti-Pattern

Bandwidth
Anti-Pattern
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Topology:

𝐴 =

Matrix Reordering for Graph Learning 

Example: Water Distribution Network
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Heatmap:

Matrix Reordering for Graph Learning 

Water Distribution Network
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Traveling Salesman:

runtime of 
~2 secs.

Matrix Reordering for Graph Learning 

Matrix Reordered Water Distribution Network
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Current Research  at UMD, 2021

Transition to Networked
Decomposition and Incremental 

Learning of Multi-Domain Graphs 
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Time

Transition to Networked Decomposition 

Component Characteristics

Connection Characteristics

Temporal Characteristics

Spatial Characteristics

Attribute-Driven Decomposition of System Graphs
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Shanthamallu et al., 2019

Transition to Networked Decomposition 

Supra Graph Framework: Support for multi-layer / multi-
domain graphs, graph zones, viewpoints, etc.
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• Washington DC’s drinking 
water is distributed by 
elevation levels. 

• Distribution network is 
divided into “pressure zones”.

Transition to Networked Decomposition 

Example: Washington DC Water Network
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Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Transition to Networked Decomposition 

Water Network Decomposition into Graph Layers
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~91.9 s

~81.6 s

~91.1 s

~90.6 s

~92.3 s

~98.2 s

~8.2 s

GPU RuntimeDecomposed Network

Total GPU Runtime = 553.9 s

Original Network

Total GPU Runtime = 2935.4 s

Transition to Networked Decomposition 

Incremental Learning of Network / Graph Zones

Accelerated 
Learning
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Topology:

𝐴 =

Transition to Networked Decomposition 

Washington DC Metro System Network
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Heatmap:

Transition to Networked Decomposition 

Washington DC Metro System Network
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Transition to Networked Decomposition 

Washington DC Metro System Network
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~115.03 s

~97.26 s

~98.33 s

~102.95 s

~102.86 s

~101.12 s

GPU RuntimeDecomposed Network

Total GPU Runtime = 617.55 s

Original Network

Total GPU Runtime = 25582.10 s

Accelerated Learning of Network / Graph Zones

Transition to Networked Decomposition 



AI4SE/SE4AI October 28 & 29, 2020 40

• To date we have achieved 
considerable success in 
understanding semantic 
modeling and ML.

• Need to show their 
collaboration being applied 
to a domain-specific 
networked structure. 
infrastructure.

Next Big Step 

Semantic Model and Machine Learning Liaison
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Summary of Results/Future Work

Year 1: Teaching Machines to Understand Graphs

Year 2: Go Deep, Dynamic,  Broad, Hybrid

Year 3: Create Digital Twin Experience

• Teaching machines to understand small graphs having static graph topologies.
• Auto-encoder design (guarantees on system graph representation).
• Formulae for design of neural network architectures for specific types of graph.
• Explore opportunities for composition of neural network architectures.
• Identification of events via time-series anomaly detection.
• Basic mechanisms for semantic / machine learning interaction.
• Integration of simulation and machine learning.

• AI/ML architectures for digital twin experience.
• Applications.

• Deep graph neural networks / dynamic graph topologies.
• Reasoning with events, space and time. 
• Inject semantics into machine learning models.
• Applications.

Semantics

Semantic
Modeling

Machine
Learning

Experience
Provide 

Inject
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Thank You

Questions?

Contact Information

Mark Austin: austin@umd.edu
Maria Coelho: mecoelho@terpmail.umd.edu
Mark Blackburn: mblackbu@stevens.edu

mailto:austin@isr.umd.edu
mailto:mecoelho@terpmail.umd.edu
mailto:mblackbu@stevens.edu
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Semantic Modeling for Model-Centric Engineering

MetaïDomain Ontologies and Rules

Instances

Data
Requirement
Individual

verify

Textual Requirements define

Classes

Ontologies and Models

Design Rules

Engineering Model

System Structure

System Behavior

a c d

b

Reasoner

Relationships

Properties

Rules and Reasoner

import import import

im
po

rt

Ontology

Rules

Ontology

RulesRulesRules

Ontology Ontology

import import import

RulesRulesRulesRules
Temporal Spatial Units Currency

OntologyOntologyOntologyOntology
Temporal Spatial Units Currency

Network

Network

Requirements

Requirements

Sensor

Sensor

Control

Control

Semantic Modeling and Reasoning for ModelïCentric Engineering

BuildingïBlock Ontologies and Rules

Simple Military Exercise

Decision Making / Exercise Actions

Source: Regli W., et al. 

Military exercise actions need to occur at 
the right time and in the right place.
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Multi-Domain Semantic Modeling

Multiïdomain Semantic Modeling

Data Source A

Data Source B

Ontology A

Ontology B

Rules A

Rules B

import

import visit

visit

Data Models / Sources
DomainïSpecific

Rules
Domain

design flow
Ontology classes
and properties

design flow

Domain B

Domain A

1

Events !!!Semantic Graph
Attach

Rules Engine

Revisions to semantic graph

import
import

Executable Processing of Events

Data-Ontology-Rule Footing (Work at UMD / NIST / SERC in 2017).
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Combined Semantics + Data Mining

2

Data Source A

Data Source B

Ontology A

Ontology B

Rules A

Rules B

import

import visit

visit

Data Models / Sources
DomainïSpecific

Rules
Domain

design flow
Ontology classes
and properties

design flow

Multiïdomain Semantic Modeling

ontologies
refinement ofrefinement of

rules

Machine Learning / Data Mining

Classification Clustering Association

decision tree Group A

Group B

Group A

implies

Group B

ontologies
domain

data
domain 

Domain B

Domain A

Semantic Feature Engineering

1

Work at UMD / Building Energy Group at NIST / NCI, 2018-2019

Research Question: How can semantic modeling + machine learning / data mining work 
together as a team?


