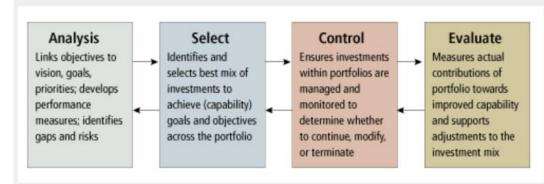


Extracting Science Traceability Graphs from Mission Concept Abstracts using Natural Language Processing

Benjamin Simpson (TAMU), Dr. Daniel Selva (TAMU), Dr. David Richardson (NASA GSFC)

Presentation Outline


- 1. Background/Motivation
- 2. AI Natural Language Processing
- 3. Methodology The Processing Pipeline
- 4. Current Results
- 5. Summary/Ongoing Work

BACKGROUND/MOTIVATION

Mission Evaluation – The Reviewer's Perspective

- Assessing mission concepts on several factors, including:
 - Objective metrics
 - Cost
 - Schedule
 - Technical Feasibility
 - Subjective metrics
 - Traceability of decisions
 - Clarity and completeness
- Mission/portfolio relevance vs. intrinsic mission details
 - The former looks at the correlation between proposed goals/objectives vs. established needs
 - The latter seeks to understand the traceability of engineering decisions *within* the mission concept

Ā M

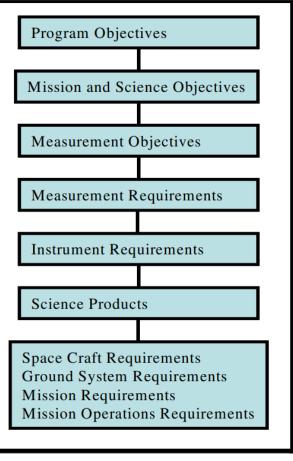
Figure 1. Simplified View of Portfolio Management Activities

Image credit [MITRE]

TEXAS A&M UNIVERSITY

Engineering

Traceability of Decisions



- Mapping the flow of programmatic goals -> measurement requirements-> engineering decisions
 - Requirements need to provision bidirectional traceability [1]
 - Reviewers need to question the logical traceability flow of concept documentation
- Some notable methods to capture traceability
 - Requirement Traceability Matrices (RTMs)
 - Science Traceability Matrices (STMs) [2]

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Science Traceability Matrix

- Standard requirement for NASA proposals
 - Establishes a taxonomy in tabular format
 - The bridge between the science and engineering worlds
- Follow-on renditions
 - P-STAF mapping measurement campaigns to instruments [3]
- Still, STMs/RTMs can vary heavily in complexity and scope:
 - No robust STM standard
 - Jargon and content representation varies significantly in practice
 - Notion of goals and objectives not clearly established
 - Also consider that STMs/RTMs may not yet be available in early documentation!

TEXAS A&M UNIVERSITY

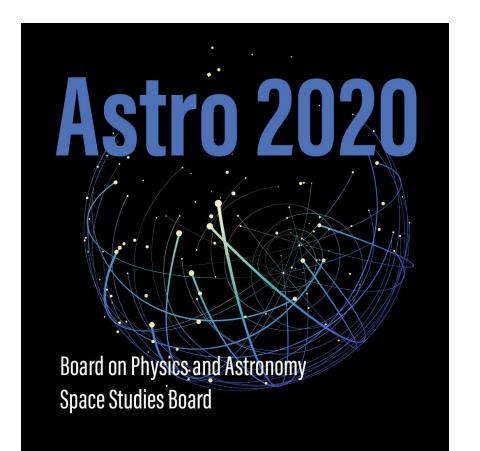
Engineering

STM Example

NASA CDIM Science CDIM S		CDIM Science	Science Requirements			Instrument Requirements			Mission Requirements	
Science Goals	Goals	Objectives	Physical Parameters	Observables	Measurement Requirement	Instrument Parameter	Science Requirement	Capability	Dri ver	Parameter
Explore the origin and evolution of the galaxies,	mass buildup, dust production history, and metal	Determine if the rate of growth of metals and dust corresponds to the growth of stellar mass at $5 < z < 8$.	galaxies via the	[OIII], [OII], [NII]/Hα, Hα/ Ηβ @5< z <8	 (i) Wavelength coverage to detect Hα out to z of 10. (ii) Spectral resolving power to resolve [NII] and Hα. (iii) Sensitivity to detect galaxies < 10⁹ M_{sun} in a deep survey. 	Wavelength range Spatial resolution (pixel scale)	$2.2 \le \lambda \le 6.0 \ \mu m$ $\Theta_{pix} = 1"-2"$	0.75 ≤ λ ≤ 7.5 μm Θ _{pix} = 1"	SU SU	Deep, medium and wide surveys each with ≥ 90% voxel completeness for
stars and planets that make up our						Spectral resolving power	λ/∆λ ≥ 300	λ/Δλ = 300	ematic Erro	internal reliability. Spatial resolution: Effective PSF FWHM $\leq 2^{"}$ at 1 μ m (from science requirements).
universe [NASA Science Plan] How does the						Point source broadband photometric sensitivity (R=5, 5 σ ; deep survey)	24.5 AB mag at J band	25.2 AB mag at J band	ability and Syste	
Universe work? How did we get here?							$5.0\times10^{-18}\text{erg}~\text{s}^{-1}\text{cm}^{-2}$ at 4.6 μm	$2.7\times10^{-18}\text{erg}\text{s}^{-1}\text{cm}^{-2}$ at 4.6 μm	Data Reli	Stable cooling to < 35 K to control > 5 µm array dark current.
[NASA 2014 Science Mission	Establish the role of active galactic nuclei (AGN) in cosmic reionization.	c contribution of super- massive black hole/ de AGNs to reionization ma photon with	photon spectral density; black-hole masses via line widths of optical	Rest-frame UV continuum @z = 5–8. [MgII] and other metal lines.	 (i) Sensitivity to detect faint quasars in a wide survey. (ii) Spectral resolving power to detect equivalent width of broad metal lines. 	Wavelength range	2.9 ≤ λ ≤ 6.0 μm	Same as above		
Directorate Strategy Document]						Spatial resolution (PSF; FWHM)	$\Theta_{\rm FWHM}$ = 2" at K band	$\Theta_{\rm FWHM}$ < 2" at K band		Deep survey: 15 deg ² , imbedded in the Wide
						Spectral resolving power	λ/∆λ ≥ 300	Same as above		survey.
						Point source broadband photometric sensitivity (R=5, 5o; wide survey)	23.5 AB mag at K band	24.0 AB mag at K band	egy	Medium survey: 30 deg²,
	progression and topology of reionization from cosmic dawn at z = 10 to the end of	of reionization by function, es measuring the ionization fraction in at least 10 redshift bins at 5 < z < 10, with accuracy better than 10%. Reionizatio	Lyα luminosity Lyα function, escape fraction, and the spatial distribution.	Lyα	 (i) Wavelength coverage to detect Lyα out to z of 10. (ii) Sensitivity to detect faint galaxies. 	Wavelength range	0.75 ≤λ _{Lyα} ≤ 0.98 µm	0.75 ≤ λ ≤ 7.5 μm	vey Strat	to overlap with 21-cm fields from HERA and SKA1-LOW.
						Spectral resolving power	λ/∆λ ≥ 100	Same as above	Sur	SIAT-LOW.
				idini galaxies.	Spectral line flux sensitivity (3.5 0 ; deep survey)	$2.9\times 10^{-17}erg~s^{-1}~cm^{-2}$ at 0.85 μm	$2.0\times 10^{-17}ergs^{-1}cm^{-2}$ at 0.85 μm		Wide survey: 300 deg ² ,	
			Reionization history Ly α and H α of the universe.		Wavelength range	0.75 ≤ $λ_{Ly\alpha}$ ≤ 1.4 μm 3.9 ≤ $λ_{H\alpha}$ ≤ 7.2 μm	0.75 ≤ λ ≤ 7.5 μm		driven by number of AGN detections.	
						Spectral resolving power	λ/∆λ ≥ 100	Same as above		
						Surface brightness sensitivity (1σ; medium survey)	$1.3\times 10^{-18}erg~s^{-1}cm^{-2}$ Hz $^{-1}sr^{-1}$ at 1.1 μm	$1.5\times 10^{-19}ergs^{-1}cm^{-2}$ Hz $^{-1}sr^{-1}$ at 1.1 μm		Read, reduce, and telemeter spectral imaging data.

STM for the Cosmic Dawn Intensity Mapper (CDIM) Probe Concept by NASA

STM Example



Science Goals	Science Objectives Scientific Measurement		Driving Requirements		
		Thermal continuum Reflection & X-ray reverberation	Energy range: 0.2–30 keV Energy resolution: 200 eV		
		High frequency QPO	Time resolution: 100 microsec		
	1.1 Measure the spin distribution of accreting black holes		Effective Area: 20,000 cm^2		
			Observe bright sources with full energy and time resolution		
1.Measure the spin distribution of accreting black holes		Transient outbursts	Wide-field monitoring: 75% of sky, 5 mcrab (1 day) sensitivity, 1 keV energy resolution, 2 arcmin position accuracy		
			ToO response (< 24 hours)		
	1.2 Measure BH spin for 20 AGN to	Reflection & X-ray reverberation	Energy range: 1–30 keV		
		Jetted TDE detection	Energy resolution: 200 eV		
	<10%		Effective Area: 20,000 cm^2		
2. Understand the equation of state of dense matter	2.1 Measure the mass and radius to within 5-10% for ~20 pulsars to map the EOS and probe potential phase transitions	Pulse profile modeling for rotation powered pulsars, accretion powered pulsars, and thermonuclear burst oscillation sources	Effective area: 16,300 cm2 @1 keV/38,200 cm^2 @ 6 keV; Time resolution: 80 microsec Energy resolution: 85-175 eV FWHM (0.2-10 keV) TOO response time: hours		
	2.2 Search for the fastest spinning pulsars	Search for spin frequencies up to 2 kHz	Time resolution: 50 microsec		
	3.1 Enable detection of 5–10 short		Wide-field monitor as above with 1ms time		
3. Explore the properties of the precursors	gamma-ray bursts per year	Detect and localize w/ immediate	resolution		
and electromagnetic counterparts of gravitational wave sources	3.2 Search for signatures of merging supermassive BH	trigger or ground searches	All wide-field monitor data downlinked to ground		

STM for the STROBE-X Probe Concept by NASA

Case Study – Astrophysical Decadal Survey

- Introduced early in this project as the target case study
- Survey strives to develop a comprehensive plan of action for the next decade
- 2020 Survey Report slated for release in Fall 2021

Ā M

TEXAS A&M UNIVERSITY

Engineering

How can we leverage AI to help

build/visualize traceability in the context of mission proposals?

Research Question

What we know about our domain:

ullet

- Contains mission concepts
- Highly variant verbiage
- Very mixed representations of 'similar' information

Targeted Task Areal

Astro2020 Statement of Task

ĀM

1. Provide an overview of the current state of astronomy

2. Identify most compelling science challenges

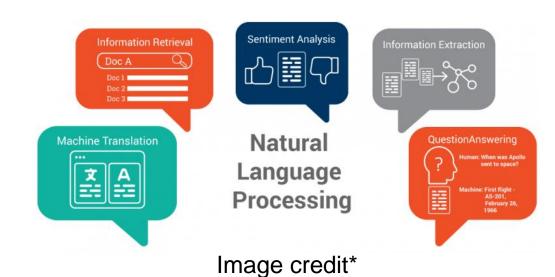
3. Develop a comprehensive research strategy

4. Utilize and recommend decision rules for the research strategy

5. Assess the state of the profession

AI – NATURAL LANGUAGE PROCESSING

Natural Language Processing (NLP)


- An umbrella term encompassing a wide range of strategies used to analyze text (from structured to unstructured)
- Can be as simple as looking at term frequency
- Some useful NLP tasks
 - Parts of Speech (POS) tagging
 - Named-entity recognition
 - Relation extraction

*https://medium.com/@mallrishabh52/natural-language-processing-2913817282c1

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

These are very crucial

for this work

Ā M

TEXAS A&M UNIVERSITY

Engineering

Named-Entity Recognition (NER)

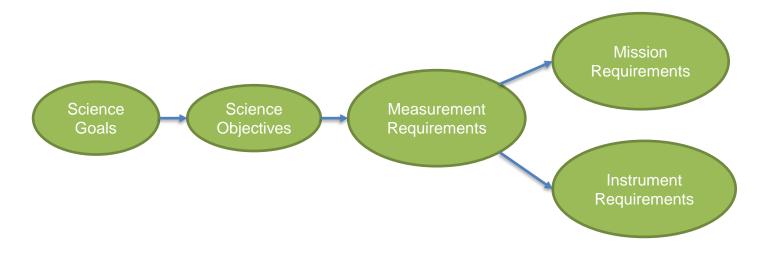
- Identify words or phrases from text and assign them a label
 - Example
 - "Texas A&M {entity_type: ORG} defeated No.1 ranked Alabama in a stunning upset."
 - State of the art methods utilize machine learning (neural networks, transformers) for NER
 - Models are pre-trained and fined tuned to perform NER
 - Also consider entity disambiguation
 - Entities that may seem similar but are actually different
 - Example: "*Washington*" -> PERSON or LOCATION?

TEXAS A&M UNIVERSITY

Engineering

ĀM

Relation Extraction

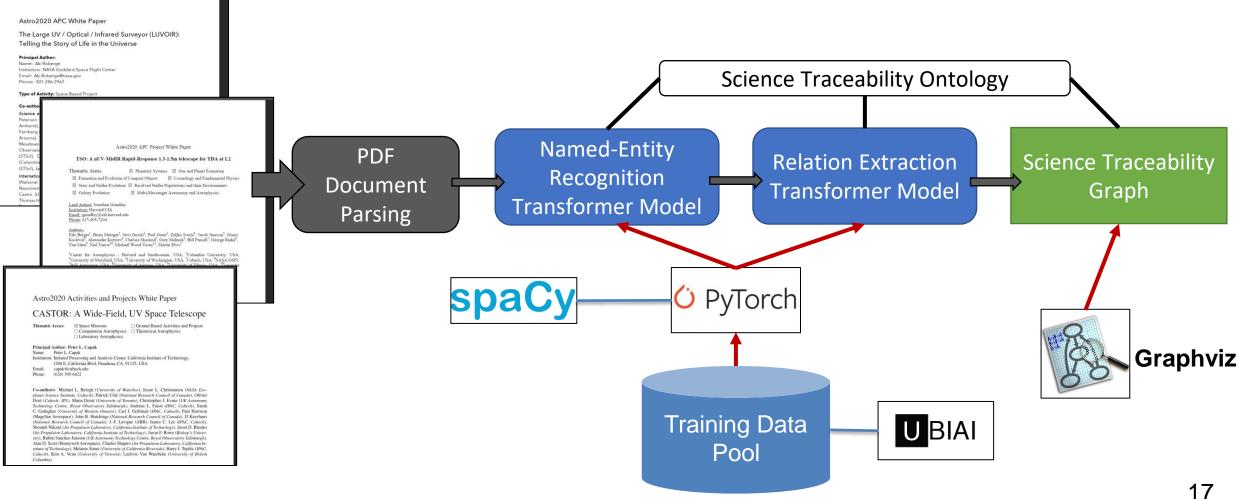


- Given entities and their types ... are they related (and how)?
- Several methods exists; we have explored:
 - Supervised-methods
 - Train a model to predict relations based on labeled data
 - Labels could be based on features (entity types, parse trees, POS tags)
 - Embeddings (related entities appear spatially close)
 - Transformer models encapsulate these embeddings
- Paired with NER, we attain two useful techniques for Information Extraction

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

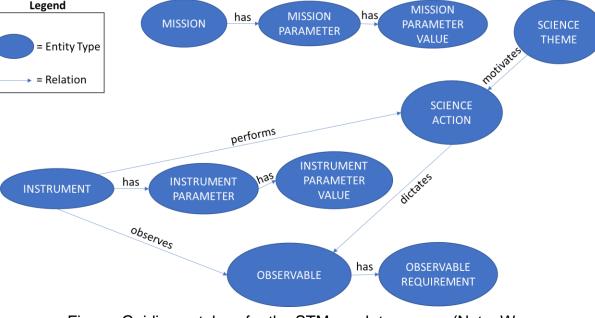
Application to the Astrophysics Decadal Survey

- Science traceability matrices are important when assessing NASA space missions
 - **Postulate**: STMs can be represented as graphs with entities (nodes) and relations (edges)
- We can reduce the STM to a graph-style taxonomy and apply <u>information extraction</u> methods on mission concept documentation
 - I.e. submitted Astrophysics Decadal Proposals



METHODOLOGY – THE PROCESSING PIPELINE

Pipeline Structure


TEXAS A&M UNIVERSITY Engineering

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Science Traceability Ontology

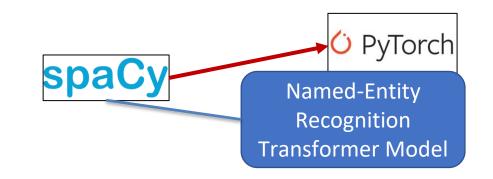
- We formulated a custom ontology to serve as the backbone behind the science traceability 'graph'
 - Motivations from STM, P-STAF, and Astro Decadal Survey Process [2-4]
- For other domains (DoD) you can adapt from this taxonomy
 - Brainstorming examples:
 - "Science Theme" -> "Capability Need"
 - "Instrument" -> "Sensor"
 - "Observable Requirement" -> "Capability Requirement"

Å M

Figure: Guiding ontology for the STM graph taxonomy (Note: We are actively working on an updated version for this graph).

TEXAS A&M UNIVERSITY

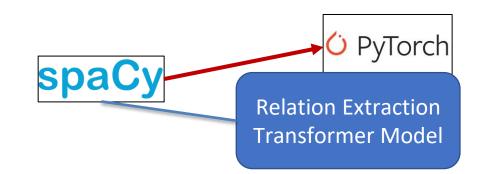
Engineering


PDF Document Parsing

- Open Access Python library to parse documentation
 - <u>https://pypi.org/project/py-pdf-parser/</u>
- Extract "science" and "engineering" sections from proposal documentation
 - Created custom python script to filter out unwanted sections of the PDF document (namely the author and references lists)

Pre-Trained NER Transformer

- Wrapped through spaCy 3.0 (python)
- Used PyTorch transformer models
 from huggingface:
 - <u>https://huggingface.co/</u>
- SciBERT [5] pretrained model
 - Transformer model based off BERT architecture
 - Trained on 1.14 million scientific papers (3.17 billion tokens)



TEXAS A&M UNIVERSITY

Engineering

Relation Extraction Transformer

- Adds another pre-trained SciBERT
 model to the pipeline
- spaCy provides example that trains entity-entity pairings (relations) from scratch
 - <u>https://github.com/explosion/projects/tr</u> ee/v3/tutorials/rel_component

ĀM

TEXAS A&M UNIVERSITY

Engineering

Training the Transformer Models

- Training data development conducted through a webbased annotation tool:
 - UBIAI: <u>https://ubiai.tools/</u>
- Training files are then downloaded and pushed through the training process

UBIAI	
Annotation Details	Documents Pre-annotation Metrics
roject Details roject Name : NSTGRO roject Type : Span Based Annotation ↓ Auto Save 🕑 Auto Detect	Keyword Search Q Keyword Search G
rogress nished Documents : 102 otal Documents : 112	ABRIXAS (MISSION) (A BRoad - band Imaging X - ray All - sky Survey (MISSION)) was a German astronomy spacecraft intended to monitor X - ray emissions SCIENCEACTION in the Universe SCIENCEATHENE (MONITORS) - ray emissions (A BRoad - band Imaging X - ray All - sky Survey (MISSION)) was a German astronomy spacecraft intended to monitor X - ray emissions (SCIENCEACTION) in the Universe SCIENCEATHENE (MONITORS) - ray emissions (A BRoad - band Imaging X - ray All - sky Survey (MISSION)) was a German astronomy spacecraft intended to monitor X - ray emissions (SCIENCEACTION) in the Universe SCIENCEACTION in the Universe SCIENCEACTION (MISSION)) was a German astronomy spacecraft intended to monitor X - ray emissions (MISSION) (A BRoad - band Imaging X - ray All - sky Survey (MISSION)) was a German astronomy spacecraft intended to monitor X - ray emissions (SCIENCEACTION) in the Universe SCIENCEACTION (MISSION) (
Cocuments	The instrument was actually Seven Wolter-1 telescopes INSTRUMENT of Tocal length INSTRUMENTPARAMETER 160 cm each INSTRUMENTPARAMETER Value 105
1963-038C_2021-08-02_14:15.txt	
xray_grating_spectroscopy_probe	INSTRUMENTPARAMETER , each of 40 arc - minutes diameter INSTRUMENTPARAMETERVALUE , were separated by 7 degrees from each other INSTRUMENTPARAMETERVALUE .
SPICA_2021-08-02_14:14.txt	
space_based_laser_guide_star_mis	
SGL_2021-08-02_14:14.txt	
OASIS_2021-08-02_14:14.txt	✓ ★ ABRIXAS_2021-08-02_14:15.txt TI ●
LUVOIR_2021-08-02_14:14.txt	\checkmark × \leftarrow \otimes \square

Figure: UBIAI annotation user interface

TEXAS A&M UNIVERSITY

Engineering

ĀM

Visualization through GraphViz

- Graph visualization done through GraphViz
 - Open-source graph visualization software
 - <u>https://graphviz.org/</u>
 - Python wrapper for graphviz: <u>https://pypi.org/project/graphviz/</u>
- Customized graph structure to organize entities and relations to resemble an STM (in graph form)

TEXAS A&M UNIVERSITY

Engineering

Tool GUI - AstroNLP

- Processing pipeline implemented in python-based tool
 - GUI Library: PyQt5 (<u>https://pypi.org/project/PyQt5/</u>)
- Capabilities:
 - Process multiple PDFs (documentation contained in local repo is automatically read and parsed)
 - Extract entities and relations
 - Visualize STM in graph form for each proposal

Tool GUI - AstroNLP

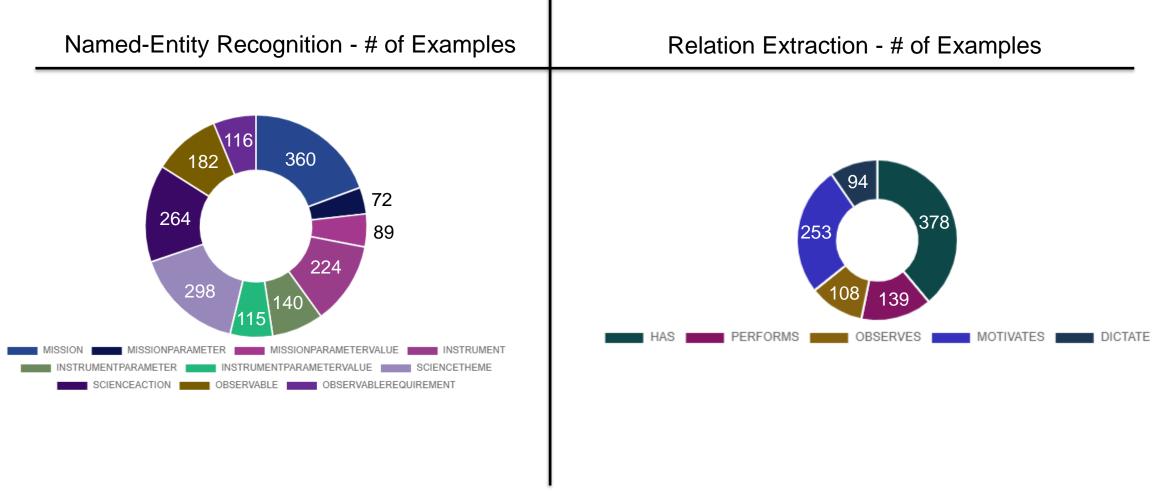
Mission-level

analysis

(traceability

extraction and mission-level relevance)

Step 1: Gather and Process Documentation	Portfolio Evaluation (WORK IN PROGRESS)
Process Documentation	
NOTE: Make sure to place all mission proposals (.pdf format) in the /pdfs repository.	
# of Documents Processed: 0 # of Tokens Processed: 0	
# of Entities Identified: 0 # of Relations Identified: 0	
Mission-Level Decadal Relevance	
Step 2: Select Mission for Summary Most Relevant Science Panel: Find Decadal Releva	
Top 3 Relevant Science Questions:	
	Poi
	Select Mission to add to Portfolio Select Mission to remove from Portfolio
	· · · · · · · · · · · · · · · · · · ·
Mission-Level Science Traceability Generate Mission's Science Traceability Graph:	Add Mission Assess Portfolio Remove Mission
Generate Graph	
	Portfolio:
Predicted Entities Predicted Relations	Mission Name


DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

CURRENT RESULTS

Training Data Size

*These numbers grow weekly as more examples are added!

Evaluating Performance

- Precision, Recall, and F1 scores are a common method to evaluate NER and Relation Extraction Tasks
 - Precision (P) Fraction of relevant instances amongst predicted instances
 - Recall (R) Fraction of relevant instances that were predicted
 - F1 Harmonic mean of precision and recall:
- We're, however, using the scoring metrics detailed in the Message Understanding Conference (MUC) [6] with a slight deviation
 - They capture different categories of error beyond the strict correct/incorrect metrics
 - We use these to evaluate the NER transformer only

MUC-5 Definitions

Engineering

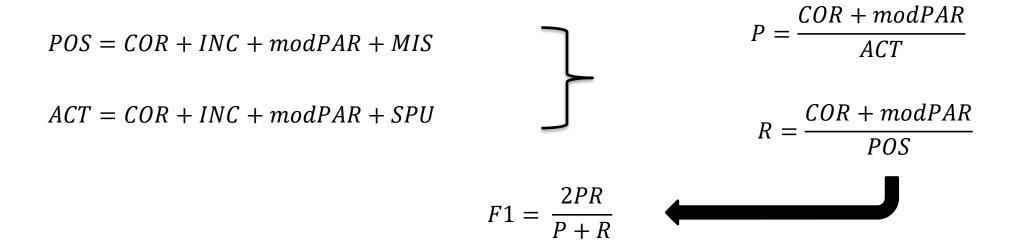

COR	Correct	response = key
PAR	Partial	response ≅ key
INC	Incorrect	response ≠ key
SPU	Spurious	key is blank and response is not
MIS	Missing	response is blank and key is not
	Noncommittal	key and response are both blank

Figure: Scoring categories as per [6]

*We take a slight deviation from the "Partial" (PAR) metric, preferring to calculate it as the degree of 'coverage' the predicted entity has with a true entity. -> modPAR

Transformer Performance Scores

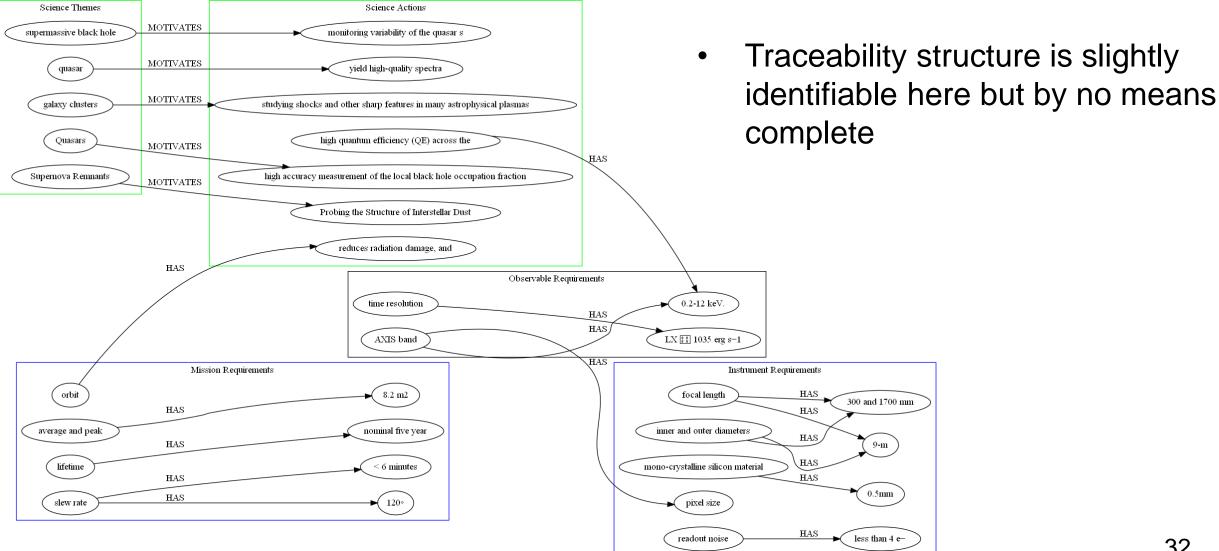
• Message Understanding Conference (MUC) metrics [6]:

Scoring Metric	NER Transformer	Relation Extraction Transformer
Precision (P)	0.17	0.49
Recall (R)	0.14	0.28
F1	0.15	0.35

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

TEXAS A&M UNIVERSITY

Engineering


ĀM

Applied Results: AXIS

- AXIS: The Advanced X-Ray Imaging Satellite
 - Probe Mission Concept
 - 18 page proposal document
- Post-Processed Document Metrics:
 - 7097 tokens analyzed
 - 473 total entities identified
 - 20* relations extracted
 - *Many relations are filtered out if they do not meet a minimum confidence score (currently 50%)

AXIS Extracted STG

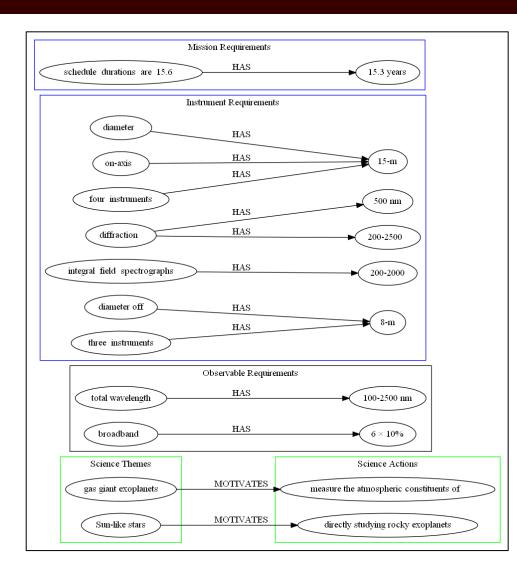
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

TEXAS A&M UNIVERSITY

Engineering

AM

Applied Results: LUVOIR



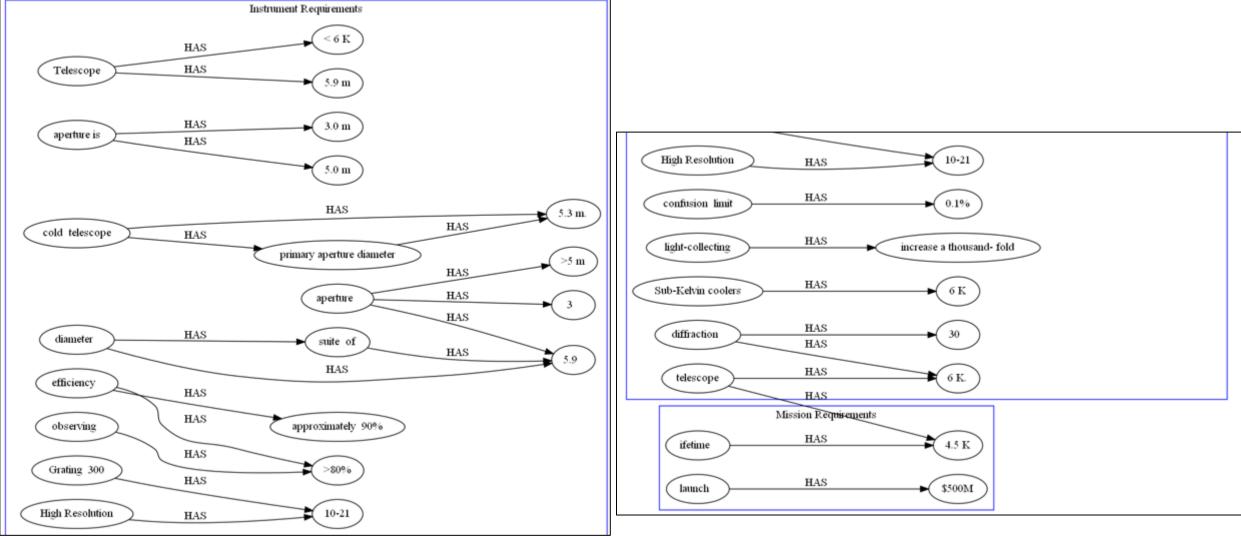
- LUVOIR: Large UV/Optical/IR Surveyor
 - Large Mission Concept
 - 12 page proposal document
- Post-Processed Document Metrics:
 - 5788 total tokens analyzed
 - 220 total entities identified
 - 13 total relations extracted

LUVOIR Extracted STG

Engineering

- Some comments:
 - Certain relations were not extracted (e.g. no clarity on traceability from science actions, to observable requirements, to instrumentation)

Applied Results: OST



- OST: Origins Space Telescope
 - Large Mission Concept
 - 15 page proposal document
- Post-Processed Document Metrics:
 - 9429 tokens analyzed
 - 531 total entities identified
 - 35 total relations extracted

OST Extracted STG

Engineering

OST Extracted STG cont.

HAS spanning nearly 8 octaves spectral HAS wavelength range 2.8 to 588 µm. HAS 2.8 to 588 µm wavelength HAS 2.8-20 µm HAS Science Actions obtain tier of transmission Science Themes conduct spectroscopic MOTIVATES MOTIVATES proto-planetary disks study water and gas

Observable Requirements

- More spurious information
- Very little 'scientific' information extracted
- A few instances of 'incorrect' relations
 - i.e. not compliant with predefined ontology

TEXAS A&M UNIVERSITY

- Valid instances of extracted relations and valid entities show promise however, more work is needed
- Limitations on training data size affect quality of outputs
 - NER is more complicated a task than RE
 - More label types, more variations of entities within an entity type
- Graph visualization limited to items with sufficient relation confidence scores
 - I.e. relations with low confidence are filtered out (50% confidence threshold)
 - Certain 'actual' relations could be missed by the model

SUMMARY/ONGOING WORK

- Area of proposal evaluation could very well leverage support from natural language processing
 - Semantic technology provides a very viable use case for this area
- We created a pipeline for the generation of science traceability graphs within the astrophysics space mission domain
- We have demonstrated, to a low degree of fidelity, the ability of extracting a traceability structure from raw documentation

Application to Other Domains

- Whilst our tool is not immediately applicable to other domains (e.g. Earth Science, DoD, Human Spaceflight), the methods represented can be applied elsewhere
- What you will need:
 - An ontology of sorts to guide your annotation and training processes
 - Talk with experts ... get a good framework established early and follow it strictly
 - Be mindful of ambiguities that could arise
 - Plenty of training examples:
 - Most of the training data development has been conducted by myself and an undergraduate student
 - If you have access to a rich data pool, and have some extra hands on deck, this need could be met more swiftly

Future Work

- Improvements of performance within the pipeline:
 - Increasing the number of training examples
 - Also updating ontology to better map mission parameters into the graph STM
 - Filtering rules to exclude invalid relations and inappropriate entities
- Assessments on a portfolio level:
 - Multi-mission summaries
 - Determine science relevance to the Astrophysics Decadal Survey Decadal for >1 missions
- This work was selected for publication at the 2022 AIAA SciTech Conference:
 - Title: "Extracting Science Traceability Graphs from Mission Concept Abstracts using Natural Language Processing"

Acknowledgements

This work was supported by a NASA Space Technology Graduate Research Opportunities Award (Grant No. 80NSSC20K1226).

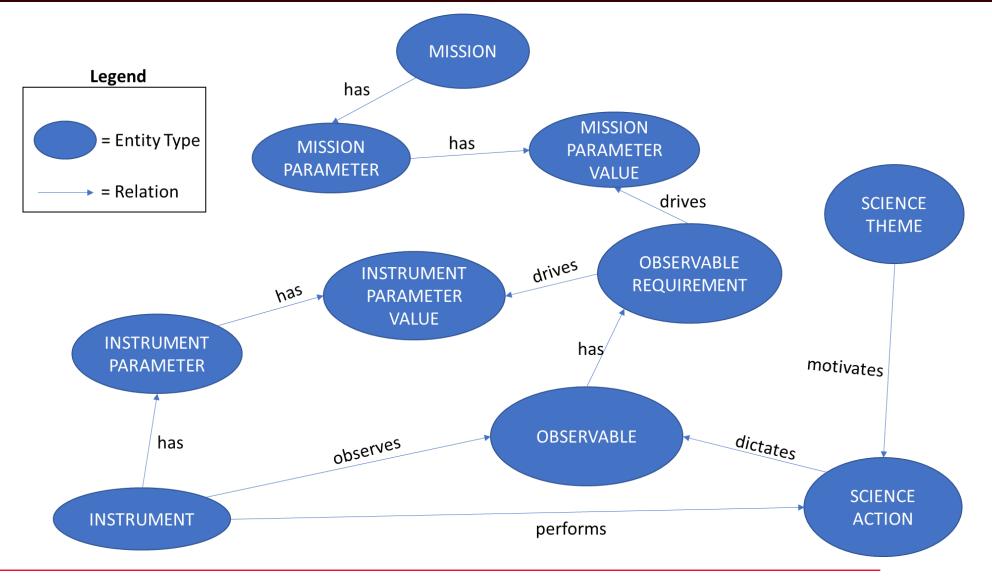
[1] – NASA, 2016, Systems Engineering Handbook, Revision 1, Washington, DC, USA: National Aeronautics and Space Administration (NASA), NASA/SP-2016-6105 Rev2.

[2] – J. R. Weiss, W. D. Smythe and Wenwen Lu, "Science traceability," *2005 IEEE Aerospace Conference*, 2005, pp. 292-299

[3] – L. Jones-Wilson, S. Susca and K. Reinholtz, "Project-domain Science Traceability and Alignment Framework (P-STAF): Analysis of a payload architecture," *2018 IEEE Aerospace Conference*, 2018, pp. 1-16

[4] – National Research Council. 2010. New Worlds, New Horizons in Astronomy and Astrophysics. Washington, DC: The National Academies

[5] – Beltagy, Iz et al. "SciBERT: Pretrained Contextualized Embeddings for Scientific Text." ArXiv abs/1903.10676 (2019): n. pag.


[6] – Chinchor, N. Beth Sundheim, B. 1993. "MUC-5 evaluation metrics". *In Proceedings of the 5th conference on Message understanding (MUC5 '93).* Association for Computational Linguistics, USA, 69–78.

BACKUP CHARTS

Updated STM Ontology

