

#### Analyzing Cyber Attack Impacts and Defense Strategies Using Machine Learning

**Daniel Colvett** 

# Petri Nets with Players, Strategies, and Costs Overview



#### **Research Background**



From Petty et al. [1]



THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

[1] Petty, Mikel D, Phil M Showers, Tymaine S Whitaker, John A Bland, Walter Alan Cantrell, C Daniel Colvett, and Katia P Maxwell. 2019. "Modeling Cyberattacks with Extended Petri Nets: Research Program Update." In Proceedings of the 2019 AlaSim International Conference and Exposition. Huntsville, AL, 11. Huntsville, AL.

3

# Petri Nets Overview

- Originally proposed by Carl Petri
  - 1962 dissertation [2]
  - Extended many times
- 6 Tuple Model
  - Places
  - Transitions
  - Arcs between places and transitions
  - Max tokens per place
  - Initial marking (Tokens)
  - Arc weights





























• Inhibitor arcs prevent a transition from firing









From Petty et al. [1]



THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

[1] Petty, Mikel D, Phil M Showers, Tymaine S Whitaker, John A Bland, Walter Alan Cantrell, C Daniel Colvett, and Katia P Maxwell. 2019. "Modeling Cyberattacks with Extended Petri Nets: Research Program Update." In Proceedings of the 2019 AlaSim International Conference and Exposition. Huntsville, AL, 11. Huntsville, AL.

8

# **PNPSC** Overview

- Earlier work extended Petri nets to add players and strategies (PNPS) [3]
- Petri nets with players, strategies, and costs (PNPSC) extends the PNPS formalism [1]
  - Adds representation of the relative cost of actions taken
  - Resolves ambiguities in the original definitions

[1] Petty, Mikel D, Phil M Showers, Tymaine S Whitaker, John A Bland, Walter Alan Cantrell, C Daniel Colvett, and Katia P Maxwell. 2019. "Modeling Cyberattacks with Extended Petri Nets: Research Program Update." In Proceedings of the 2019 AlaSim International Conference and Exposition. Huntsville, AL, 11. Huntsville, AL.

9



[3] Zakrzewska, Anita N., and Erik M. Ferragut. 2011. "Modeling Cyber Conflicts Using an Extended Petri Net Formalism." In \_2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS)\_, 60–67. Paris, France: IEEE. [https://doi.org/10.1109/CICYBS.2011.5949385](https://doi.org/10.1109/CICYBS.2011.5949385).

### **PNPSC** Overview





#### **PNPSC** Overview - Rates

- T1 has rate 4
- T2 has rate 9
- T1 and T2 are both enabled at the same time

- Firing time is set for each enabled transition by using its rate
- Earliest scheduled is selected to fire
- Rates are relative
- Higher rate = more likely to fire
- Lower Rate = less likely to fire





# **PNPSC** Overview - Players

- PNPSC net can have one or more players
- Two or more players can have competing or cooperative goals
- Places can be player observable
- Transitions can be player controlled





# **PNPSC** Overview - Strategies

- Defender can observe P3 is marked
- If Defender's goal is to block the attack (P5 marked), then their strategy would be to increase T4's rate and lower T3's rate





# **PNPSC** Overview – Fire Costs

- Costs are added for transition firing
- T1 and T3 have a costs of 2 and 1 respectively
- Total costs = 3





## **PNPSC** Overview – Change Costs

- Cost based on changing player controlled rates
- Rates of player-controlled transition have associated cost to change
- Cost can be the summation of the change
- Example
  - If there are 3 Player Controlled transitions, then changing fire rate costs:
  - {0,0,0} -> {4,0,4} would have a cost of 8
  - {1,2,3} -> {2,2,4} would have a cost of 2



## **PNPSC** Formalism

A PNPSC is 14-tuple formally defined as  $PNPSC = (P, T, W, M_0, B, L, G, \Theta, O, F, \Omega, \Gamma, C, D)$ , where

- 1)  $P, T, W, M_0, B, L$ ; as defined for a standard Petri net
- 2)  $G = \{g_1, g_2, \ldots\}$ ; finite, non-empty set of players
- 3)  $\Theta = (T_0, T_1, T_2, \dots, T_{|G|})$ ; partition of transition set T into |G| + 1 subsets such that  $\Theta = T_0 \cup T_1 \cup T_2 \cup \dots \cup T_{|G|}$  and  $T_j \cap T_k = \emptyset$  for  $0 \le j, k \le |G|$ and  $j \ne k$ ;  $T_i$  = set of transitions controlled by player  $g_i$  for  $1 \le i \le |G|$  and  $T_0$  = set of stochastic transitions not controlled by any player
- 4) O = (O<sub>1</sub>, O<sub>2</sub>,..., O<sub>|</sub>G|); collection of |G| subsets of place set P, i.e, O<sub>i</sub> ⊆ P for 1 ≤ i ≤ |O|; O<sub>i</sub> is the subset of place set P observable by player g<sub>i</sub>
- 5)  $F : T_0 \to \mathbb{R}^+$ ; fixed firing rates for non-playercontrolled transitions
- 6)  $\Omega: (T T_0) \to (\mathbb{R}^+ \times \mathbb{R}^+)$ ; initial and maximum firing rates for player-controlled transitions

- 7) Γ : (Γ<sub>1</sub>, Γ<sub>2</sub>,..., Γ<sub>|G|</sub>; collection of functions Γ<sub>i</sub> : M<sup>\*</sup><sub>Oi</sub> → ℝ<sup>+|T<sub>i</sub>|</sub> where each Γ<sub>i</sub> is a mapping from the possible markings of player g<sub>i</sub>'s observable places to the desired firing rates for each of player g<sub>i</sub>'s controlled transitions
  </sup>
- 8)  $C = (C_{fire}, C_{change})$ ; where  $C_{fire}:(T \to \mathbb{R}^+)$  is the cost for firing a transition and  $C_{change}:(T \times \mathbb{R}^+) \to \mathbb{R}^+$  is the cost for changing the rate of a transition by  $\delta \in \mathbb{R}^+$
- 9) D: T → ℘(G); players that incur a cost for a fired or changed transition

From Petty et al. [1]



[1] Petty, Mikel D, Phil M Showers, Tymaine S Whitaker, John A Bland, Walter Alan Cantrell, C Daniel Colvett, and Katia P Maxwell. 2019. "Modeling Cyberattacks with Extended Petri Nets: Research Program Update." In Proceedings of the 2019 AlaSim International Conference and Exposition. Huntsville, AL, 11. Huntsville, AL.

# Machine Learning Overview



# Machine Learning Overview

- Agent learner
- Environment everything outside of the agent
- Action what an agent can change to impact the environment
- State Representation of the current environment
- Reward Consequence of Action



# Machine Learning Overview (cont.)

- Reinforcement learning can be applied to PNPSC nets [5].
  - Agent Player
  - Environment PNPSC net
  - Action changing fire rates of the player controlled transitions
  - State the player observable marking of the PNPSC net
  - Reward Final state achieved (positive if successful, negative if not)



#### 19

[4] Sutton, Richard S., and Andrew G. Barto. 2018. \_Reinforcement Learning: An Introduction\_. 2nd ed. Adaptive Computation and Machine Learning Series. Cambridge Massachusetts: The MIT Press.



[5] Bland, John A., Mikel D. Petty, Tymaine S. Whitaker, Katia P. Maxwell, and Walter Alan Cantrell. 2020. "Machine Learning Cyberattack and Defense Strategies. Computers & Security\_92 (May): 101738. [https://doi.org/10.1016/j.cose.2020.101738](https://doi.org/10.1016/j.cose.2020.101738].

# Machine Learning Overview (cont.)

- E-Greedy Technique used
- Set E-value to set algorithm's probability of taking nongreedy action
- Nongreedy actions are exploratory

From Sutton and Barto [4]



20

# Enhancements to Previous Work



#### Enhancements

- Previous work was using machine learning and PNPSC nets [5], but has since been enhanced
  - Initial PNPSC simulator was limited to possible rates and number of players because of state space explosion issues. This was corrected by creating a PNPSC simulator using a database management system [6]
  - Representation for the computer system user was not present.

[5] Bland, John A., Mikel D. Petty, Tymaine S. Whitaker, Katia P. Maxwell, and Walter Alan Cantrell. 2020. "Machine Learning Cyberattack and Defense Strategies." \_Computers & Security\_ 92 (May): 101738. [https://doi.org/10.1016/j.cose.2020.101738](https://doi.org/10.1016/j.cose.2020.101738).

22



[6] C. D. Colvett, M. D. Petty, J. A. Bland and K. R. Baker, "Simulating Cyberattacks with a Petri Net Discrete Event Simulator," \_2019 International Conference on Computational Science and Computational Intelligence (CSCI)\_, 2019, pp. 67-71, doi: 10.1109/CSCI49370.2019.00018.

### Enhancements (cont.)



| Place Description |                                                                                         |
|-------------------|-----------------------------------------------------------------------------------------|
| Place Name        | Description                                                                             |
| uP1               | User initiate connection to application                                                 |
| uP2               | User was incorrectly blocked from creating a session                                    |
| uP3               | User was allowed to create session, but flagged as possible attack                      |
| uP4               | User begins HTTP/HTTPS GET request for information                                      |
| uP5               | User's HTTP/HTTPS GET request for information is incorrectly blocked as an attack       |
| uP6               | User's HTTP/HTTPS GET request for information allowed, but flagged as possible attack   |
|                   | User completes HTTP/HTTPS GET request for information. User decides if additional       |
| uP7               | actions required                                                                        |
| uP8               | User closes application session                                                         |
| uP9               | User begins HTTP/HTTPS POST request to send data to server                              |
| uP10              | User's HTTP/HTTPS POST request to send data is incorrectly blocked as an attack         |
|                   | User completes HTTP/HTTPS POST request to send data to server. User decides if          |
| uP11              | additional actions required                                                             |
| uP12              | User's HTTP/HTTPS POST request to send data, but flagged as possible attack             |
| uP13              | User closes application session                                                         |
|                   | Transition Description                                                                  |
| Transition Name   | Description                                                                             |
| uT1               | Defender blocks User from initiating session                                            |
| uT2               | Defender allows User to initiate session                                                |
| uT3               | Defender allows User to session, but flags as possible attack                           |
| uT4               | Defender incorrectly blocks User HTTP/HTTPS GET request for data                        |
| uT5               | Defender allows User HTTP/HTTPS GET request for data                                    |
| uT6               | Defender allows User HTTP/HTTPS GET request for data, but flags as possible attack      |
| uT7               | User needs to perform HTTP/HTTPS POST request to send data to server                    |
| uT8               | User has completed all necessary actions, closes application session                    |
| uT9               | User needs to perform additional HTTP/HTTPS GET request for information                 |
| uT10              | Defender incorrectly blocks User HTTP/HTTPS POST request to send data to server         |
| uT11              | Defender allows User HTTP/HTTPS GET POST request to send data to server                 |
| uT12              | Defender allows User HTTP/HTTPS POST request to send data, but flags as possible attack |
| uT13              | User needs to perform additional HTTP/HTTPS GET request for information                 |
| uT14              | User has completed all necessary actions, closes application session                    |

**uT1, uT4, uT10 -** Defender Blocks User

**uT3, uT6, uT12 -** Defender Flags User Request



# Cross-Site Scripting Model (CAPEC 63)



# MITRE CAPEC Database

- Cross-Site Scripting was chosen as it consistently ranks high in the Open Web Application Security Project (OWASP) Top Ten security vulnerabilities
- The MITRE Common Attack Pattern Enumeration Classification (CAPEC) database was used as the baseline for describing the attack. Cross-Site Scripting has a CAPEC ID of 63 [7].
- For full details on the Cross-Site Scripting PNPSC nets, see [5]. To see details on how the net was validated, see [8].

[5] Bland, John A., Mikel D. Petty, Tymaine S. Whitaker, Katia P. Maxwell, and Walter Alan Cantrell. 2020. "Machine Learning Cyberattack and Defense Strategies." \_Computers & Security\_92 (May): 101738. [https://doi.org/10.1016/j.cose.2020.101738](https://doi.org/10.1016/j.cose.2020.101738).

[7] The MITRE Corporation, "Common Attack Pattern Enumeration and Classification". https://capec.mitre.org/, October 2, 2021



#### Cross Site Scripting – Full Net





# Cross Site Scripting – Explore Phase

- When aP2 is marked:
  - ---Attacker---
  - Sets Rates aT2 = 0, aT5 = 10, aT8 = 10
  - Average Reward = 7.19
  - ---Defender---
  - Sets Rates aT12 = 10, aT13 = 0, aT14 = 0
  - Average Reward = -19.75
- aT2 Spider website
- aT5 Proxy tool to find all links
- aT8 Manual Brute force browsing





# **Cross Site Scripting – Experiment Phase**

- When aP4 and bP1 are marked:
  - ---Attacker---
  - Sets Rates bT2 = 0, bT5 = 10, bT8 = 0, bT11 = 10
  - Average Reward = -25.03 ٠
- When aP14 and bP1 are marked:
  - ----Defender----
  - Sets Rates bT15 = 0, bT16 = 10, bT17 = 10. bT18 = 10
  - Average Reward = -24.52

- bT2 Probes XSS strings to known URLS ٠
- bT5 Proxy tool to record results •
- bT8 Probs XSS strings in UI entry fields
- bT11 XSS injection scripts into resources •



# Cross Site Scripting – Exploit Phase

- When aP4, bP3 and cP1 are marked:
  - ---Attacker---
  - Sets Rates cT2 = 0, cT5 = 0, cT8 = 10, cT11 = 10. cT14 = 0
  - Average Reward = 40 ٠
- When aP14, bP18 and cP1 are marked:
  - ---Defender---
  - Sets Rates cT18 = 0, cT19 = 0, cT20 = 0, cT121 = 0, cT22 = 10
  - ٠

- cT2 Load victim's browser with script to get information •
- cT5 Cause victim's browser to run command
- cT8 Load victim's browser with script to perform actions
- cT11 Load victim's browser with script to request other web sites
- cT14 Load victim's browser with false information



## Cross Site Scripting – Goals Phase

- When aP4, bP7, cP3 and dP1 are marked:
  - ---Attacker---
  - Sets Rates dT6 = 10, dT16 = 10 dT15 = 10, dT2 = 10
  - Average Reward = 45
- When aP14, bP18, cP23 and dP1 are marked:
  - ---Defender---
  - Sets Rates dT11 = 10
  - Average Reward = 10
- dT2 Read application
- dT6 Gain privileges
- dT15 Execute unauthorized code
- dT16 Modify application





#### **Defender Average Reward**



- Average reward of 3.06 for  $\epsilon$ -0.04 no user
- Average reward of -20.42 for  $\varepsilon$ -0.04 with user



# **Defender Strategies Comparison**

- For the same Petri net marking, the defender would choose a different solution 80% of the time if the computer system user were present
  - Example: If the marking at the start of the exploit phase was bP17 = 1, then:
  - Defender strategy no computer system user: [cT18 = 0, cT19 = 0, cT20 = 0, cT21 = 10, cT22 = 10]
  - Defender strategy with computer system user: [cT18 = 0, cT19 = 0, cT20 = 0, cT21 = 0, cT22 = 0]



#### **Results Discussion**

- All defender scenarios showed improvement over time.
- Most variation occurs in the first 10,000 episodes
- The computer system user impacts the defender
  - Lower average reward
  - Strategies change especially if a marking was seen more than 30 times



# Future Work - UAV Model



## UAV OV1 State Model



#### Figure 1. System States and Modes

• Can we go from a high level state model to PNPSC net?



#### **UAV PNPSC Net**





# UAV PNPSC Net (cont.)

- With PNPSC net, can analyze different defense solutions to determine:
  - Impact to successfully completing mission
  - Defense solutions effectiveness against different attackers
  - Time duration before system recovers from attack



# Summary



# Summary

- Modeling with PNPSC provides opportunities to utilize machine learning to improve design solutions
- Reinforcement learning allows learning within a PNPSC model without training sets
- Using a database mitigates the state space explosion compute issue at the expense of increased run time
- The inclusion of the computer system user impacts the defender's strategy



# Summary (Cont.)

- You can answer questions such as
  - Does implementing a defense solutions increase the chance to detect an attack or significantly impact the users
  - Does increasing my skillset as an attacker make the most sense
  - Does changing my defense solution increase my chance of accomplishing the mission
  - How long does it take for my system to recover from an attack



## References

[1] Petty, Mikel D, Phil M Showers, Tymaine S Whitaker, John A Bland, Walter Alan Cantrell, C Daniel Colvett, and Katia P Maxwell. 2019. "Modeling Cyberattacks with Extended Petri Nets: Research Program Update." In \_Proceedings of the 2019 AlaSim International Conference and Exposition. Huntsville, AL\_, 11. Huntsville, AL.

[2] C. A. Petri; Kommunikation mit Automaten, Ph.D. Thesis, Schriften des Rheinisch-Westfälischen Institutes für Instrumentelle Mathematik an der Universität Bonn Nr. 2, 1962.

[3] Zakrzewska, Anita N., and Erik M. Ferragut. 2011. "Modeling Cyber Conflicts Using an Extended Petri Net Formalism." In \_2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS)\_, 60–67. Paris, France: IEEE. [https://doi.org/10.1109/CICYBS.2011.5949385](https://doi.org/10.1109/CICYBS.2011.5949385).

[4] Sutton, Richard S., and Andrew G. Barto. 2018. \_Reinforcement Learning: An Introduction\_. 2nd ed. Adaptive Computation and Machine Learning Series. Cambridge, Massachusetts: The MIT Press.

[5] Bland, John A., Mikel D. Petty, Tymaine S. Whitaker, Katia P. Maxwell, and Walter Alan Cantrell. 2020. "Machine Learning Cyberattack and Defense Strategies." \_Computers & Security\_ 92 (May): 101738. [https://doi.org/10.1016/j.cose.2020.101738](https://doi.org/10.1016/j.cose.2020.101738).

[6] C. D. Colvett, M. D. Petty, J. A. Bland and K. R. Baker, "Simulating Cyberattacks with a Petri Net Discrete Event Simulator," 2019 International Conference on Computational Science and Computational Intelligence (CSCI)\_, 2019, pp. 67-71, doi: 10.1109/CSCI49370.2019.00018.

[7] The MITRE Corporation, "Common Attack Pattern Enumeration and Classification". <u>https://capec.mitre.org/</u>, October 2, 2021

[8] Cantrell, Walter A, Katia P Mayfield, Mikel D Petty, Tymaine S Whitaker, and John A Bland. 2018. "Structured Face Validation of Extended Petri Nets for Modeling Cyberattacks." In \_Proceedings of the 2017 AlaSim International Conference and Exposition, Huntsville, AL.

