Systems Theoretic T&E for Learning-Based Systems

Paul Wach

PhD Candidate, Industrial and Systems Engineering

21 Oct 2021

Research objectives

Pure Research

- 1. Create a T&E framework for Learning-Based Systems
- 2. Characterize the change in operational conditions (*ops*) and adversarial actions (*act*)
- Characterize equation of change in ops/act to change in system implementation

Value to Government

 Characterize assurance trade space of: (increase in) data/model rights on (decrease in) need for testing and (increase in) confidence

T&E Framework Status

Objective

 Create a T&E framework for Learning-Based Systems

Status

- Work in progress
- Depends on success of other tasks
- This is the ultimate goal

Characterization of external change

Objective

 Characterize the change in operational conditions (*ops*) and adversarial actions (*act*)

Status/Recommended Path

- Use the concept of morphism to characterize change in ops/act
- Characterization of external events relative to each other is inherently included in Wymorian Systems Theory

Characterization of internal change

Objective

 Characterize equation of change in ops/act to change in system implementation

Status/Recommended Path

- Given that ops/act (external events) are characterized, the space of systems that are bounded can also be characterized
- Change in the system implementation can be mathematically characterized based on:
 - Hierarchy of system specification
 - Morphisms between systems specified at the same level

Characterize the Value to the Government

Objective

 Characterize assurance trade space of: (increase in) data/model rights on (decrease in) need for testing and (increase in) confidence

Status

 Developing a Bayesian network and utility-driven method to understand the trade space

Differentiating Levels of Knowledge of a Learning-Based System

Moving toward higher complexity: Silverfish architecture

Silverfish description

- Prohibited Area:
 - ~100 acres ≈ .16 sq. miles
- Obstacle Deployment:
 - ~50
 - Aligned to Compass Coordinates (Operator Observation Point)
- Cell Grid:

RSITY VIRGINIA TECH.

- ≈ 300 ft. x 300 ft.
- 6 Munitions per Cell (Ready/fired state)
- Vehicle Traversal:
 - Max Speed = 10 mph \approx 15 ft/sec
 - 20 seconds/grid
 - 2.3 min/protected area

Relating Levels of Knowledge: Systems Theory Perspective

SITY VIRGINIA TECH

- Each level defines a space that bounds the systems within the lower level (green)
 - Ex: Mission bounds the functional architecture
- Each level has a mathematical relationship that can be mapped to horizontal (orange) changes
 - Ex: Change in mission can be correlated to changes in operational environment and adversarial actions

Relating Levels of Knowledge: A Notional Example

Mission

The system needs to turn on the light when Object X is detected 1.

Relating Levels of Knowledge: In the context of Silverfish

Silverfish description

- Mission
 - Activate the obstacles, given detection of a physical attacker
- Functional Architecture
 - Know specification desired behavior of the System of Systems as whole
- Limited knowledge of the Physical Implementation
 - Know that a drone provides the physical attacker detection mechanism through visual surveillance
 - Know that the activation is provided by the human operator

Relating Levels of Knowledge: In the context of Silverfish

Minimum

Characterizing Value to the Government

Upper Level Decision Network

- Decision:
 - Characterize assurance trade space of: (increase in) data/model rights on (decrease in) need for testing and (increase in) confidence
- Fed by more complex Bayesian Networks
- Utility can be added (\$/time)
- Can perform risk/uncertainty analysis

Increasing complexity of the network

**Example network used to feed characterization of value to the government

M – Knowledge of Mission

- f... Full knowledge
- x... Partial knowledge
- ¬... Zero knowledge
- FA Knowledge of Functional Architecture
- CF Knowledge of Cognitive function
- PI Knowledge of physical implementation

*Ideally we have full understanding. In the case of the example of Silverfish, we are starting with full knowledge of the functional architecture and partial knowledge of the physical implementation.

Next Steps

Plans by December

- Create physical implementation of the decision making-agent and UAV-based perception agent
 - Purdue part of the team
- Isolate the human-agent and UAV elements from the MBSE model in GENESYS
 - VT part of the team
- Initial Bayesian construct

Future Steps

- Development mathematical models and advance the T&E framework
- <u>Seeking</u> government and industry <u>partners</u>

Expectations: Prospective Partners

Decision support to prove value to the Government

- If we have probabilities:
 - Gives us initial look at suggested value to government
- If we have utility value (time/\$)
 - Likely to change the recommended decision
 - Enables uncertainty analysis of decision/recommendation to the government
- Case dependence
 - Decision may be case dependent
 - Global recommendation may be different
- Combinations of full, partial, zero system knowledge
 - Used to prove effectiveness of T&E framework
 - Degree to which the morphism holds determines the evaluation of the system

What we will provide to partners

- A (recommended) tool to:
 - Model the mission and systems (onion knowledge)
 - Measure morphisms
 - Model decision makers' preferences using utility
 - Model decision makers' state of knowledge
 - Bayesian network used to:
 - Collect data/probabilities
 - Likely to be in the format of an Excel file

PURDUE UNIVERSITY®

Thank you

Questions?

Paul Wach – Presenter

paulw86@vt.edu

Peter Beling

beling@vt.edu

Laura Freeman

laura.freeman@vt.edu

Tim Sherburne

sherburne@vt.edu

Jitesh Panchal

panchal@purdue.edu

Atharva Sonanis

asonanis@purdue.edu