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Executive Summary
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Observation
Machine learning (ML) and engineered systems are coupled

Reliability, V&V, prognostics, etc. for ML 
cannot be divorced from system

We propose to use systems principles and systems theory to:
• Bring ML and learning theory to models of systems (synthesis)
• Integrate ML and systems using an understanding of levels of abstraction



Learning 
Component

System

System Context

ML/AI focus on 
learning algorithms 

(and sometimes data)

Focus on relationship 
between learning algorithms 

and their systems
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Proposition: 
Engineering intelligence requires focusing on learning systems not the problems they solve

Cody, T. “Mesarovician Abstract Learning Systems”. International Conference on Artificial General Intelligence. Springer 
(2021). In publishing.

Systems
≠

Problems



Courtesy MITRE
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Claim
Reliability, V&V, PHM, etc. 

cannot begin until as least here.

(Stronger) Claim
Reliability, V&V, PHM, etc. 

cannot begin until as least here.

Machine learning is 
viewed as a component



Parallels
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Background: Parallels in Reliability (Stateless)
Traditional Components
• Wear curves (exist for all sorts of 

physical components)

Machine Learning (Cognitive)
• Don’t physically degrade

• Project operating envelopes over a 
stochastic process
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𝐷𝐷𝑆𝑆
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𝐷𝐷𝑇𝑇1

𝐷𝐷𝑇𝑇3 𝐷𝐷𝑇𝑇4

𝐷𝐷𝑇𝑇5

Operating Envelope

Inside Envelope

Outside Envelope

In ML, similarity b/w train & test data correlates to error



Background: Parallels in PHM (State)
Traditional Components
• Prognostics

• Physical or data-driven models of 
health state

• Maintenance
• Repair, 
• Rebuild, 
• Replace

Machine Learning (Cognitive)
• Prognostics 

• Physical or data-driven transfer 
distance

• Maintenance
• Fine-tune (calibrate), 
• Transfer learning (from existing model)
• Retrain (from scratch)

7

Cody, T., Adams, S., and Beling, P.A. “Empirically Measuring Transfer Distance for System Design and Operation”. arXiv 
preprint. arXiv:2107.01184v1 (2021)

Cody, T., and Beling, P.A. “A Systems Theory of Transfer Learning”. arXiv preprint. arXiv:2107.01196v1 (2021)



Entanglement
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Physical & Cognitive Components Go Hand-in Hand

• Any other way makes an unjustified assumption about the existence 
of an independent variable

• Reliability implications
• (Non-trivial) robustness of ML in a vacuum is meaningless

• PHM implications
• Maintenance actions change machine behavior (possibly) breaking ML models

• V&V implications
• ML V&V depends on system state; component-level V&V does not generalize
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Thesis



Physical Repair → Cognitive Degradation

10

Cody, T., Adams, S., and Beling, P.A. “Empirically Measuring Transfer Distance for System Design and Operation”. arXiv 
preprint. arXiv:2107.01184v1 (2021)

S. Adams, P.A. Beling, K. Farinholt, N .Brown, S. Polter, and Q. Dong, “Condition based monitoring for a hydraulic 
actuator,” in Annual Conference of the Prognostics and Health Management Society October 2016, 2016. 



Cognitive Repair → Physical Degradation
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Courtesy MITRE



What to do?
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13

Cody, T. “Mesarovician Abstract Learning Systems”. International Conference on Artificial General Intelligence. Springer 
(2021). In publishing.



Learning Systems in UAS
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S

X Y

D A

H

Θ

𝐺𝐺:𝐷𝐷 × Θ
→ 𝑉𝑉𝐸𝐸:𝑉𝑉 × 𝐷𝐷
→ Θ

(Sensor) x (Flight Path) Pairs

Sensor Readings 
e.g., GPS, radar, cameras

Flight Paths
Half-spaces

SVM
e.g., kernel trick Hinge Loss

𝑙𝑙 𝑦𝑦 = max(0, 1 + max{𝜃𝜃𝑦𝑦𝑥𝑥 − 𝜃𝜃𝑡𝑡𝑥𝑥})
y≠𝑡𝑡

Linear Program

Suppose choice of Support 
Vector Machines (SVMs)



ML and Learning Theory as Learning Systems 
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X Y

D A

H

Θ

𝐺𝐺:𝐷𝐷 × Θ
→ 𝑉𝑉𝐸𝐸:𝑉𝑉 × 𝐷𝐷
→ Θ

⊂ 𝑋𝑋
× 𝑌𝑌 Empirical Measure of Risk

Minimization of Empirical 
Measure of Risk over Θ

using 𝐷𝐷

⊂ 𝑋𝑋

⊂ 𝑋𝑋 × 𝑌𝑌,

I.I.D.

Supervised Learning

Unsupervised  Learning

Empirical Risk Minimization



Conclusion
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