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Executive Summary

Observation
Machine learning (ML) and engineered systems are coupled

a D
Reliability, V&YV, prognostics, etc. for ML

cannot be divorced from system
\ /

We propose to use systems principles and systems theory to:
* Bring ML and learning theory to models of systems (synthesis)
* Integrate ML and systems using an understanding of levels of abstraction



Focus on relationship
between learning algorithms

System Context and their systems
System
ML/AI focus on
learning algorithms > C;(:f;g;negnt SyStemS
(and sometimes data) +
Problems

Proposition:
Engineering intelligence requires focusing on learning systems not the problems they solve

Cody, T. “Mesarovician Abstract Learning Systems”. International Conference on Artificial General Intelligence. Springer
(2021). In publishing.



Commissioned

engineering system

méregenienT Wl o (Stronger) Claim

maintenance

Reliability, V&V, PHM, etc.

Concept of System

operations S S & cannot begin until as least here.
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System
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System verification plan
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Sub-system : 1 HH
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(High-level verification . .
design & cannot begin until as least here.
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omponent verification
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design

\ Machine learning is

viewed as a component

Implementation
hardware and software
(Coding and test)

Time

Courtesy MITRE



Parallels



Background: Parallels in Reliability (Stateless)

Traditional Components Machine Learning (Cognitive)
* Wear curves (exist for all sorts of ¢ Don’t physically degrade
physical components) * Project operating envelopes over a

stochastic process

Comparison of the measurement and the simulation
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In ML, similarity b/w train & test data correlates to error
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Background: Parallels in PHM (State)

Traditional Components Machine Learning (Cognitive)
* Prognostics * Prognostics
* Physical or data-driven models of * Physical or data-driven transfer
health state distance
* Maintenance * Maintenance
e Repair, ¢= == == == == = =P e Fine-tune (calibrate),
e Rebuild, 4= = = == == == =P o Transfer learning (from existing model)
* Replace 4= = == == == == ==p o Retrain (from scratch)

Cody, T., Adams, S., and Beling, P.A. “Empirically Measuring Transfer Distance for System Design and Operation”. arXiv
preprint. arXiv:2107.01184v1 (2021)

Cody, T., and Beling, P.A. “A Systems Theory of Transfer Learning”. arXiv preprint. arXiv:2107.01196v1 (2021)



Entanglement



Physical & Cognitive Components Go Hand-in Hand

* Any other way makes an unjustified assumption about the existence
of an independent variable
* Reliability implications
* (Non-trivial) robustness of ML in a vacuum is meaningless

* PHM implications
 Maintenance actions change machine behavior (possibly) breaking ML models

* V&V implications
* ML V&V depends on system state; component-level V&V does not generalize



Physical Repair = Cognitive Degradation

External LLoad Failure Posterior Probabilities

Variable F r
o 1 A, B Source
o Failure Type Likelihood x|y  Posterior dy | x Target
08 7
g Opposing Load 0.53 0.64
06 7T External Load 0.41 0.72
S 04 Bypass Valve 0.18 0.69
Leak Valve 0.74 0.88
02 7T Other 0.67 0.80
~1.50 ~10713
-0.75 -0.5
000 475 0.5 00

1.50 15 19

279 Component - 15t Component

S. Adams, P.A. Beling, K. Farinholt, N .Brown, S. Polter, and Q. Dong, “Condition based monitoring for a hydraulic
actuator,” in Annual Conference of the Prognostics and Health Management Society October 2016, 2016.

Cody, T.,, Adams, S., and Beling, P.A. “Empirically Measuring Transfer Distance for System Design and Operation”. arXiv
preprint. arXiv:2107.01184v1 (2021)
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Cognitive Repair — Physical Degradation

Courtesy MITRE
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What to do?



Breadth of Context (of AGI)
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Cody, T. “Mesarovician Abstract Learning Systems”. International Conference on Artificial General Intelligence. Springer

(2021). In publishing.



Learning Systems in UAS

(Sensor) x (Flight Path) Pairs

SVM
e.g., kernel trick

Sensor Readings
e.qg., GPS, radar, cameras

—or—
©)

Suppose choice of Support
Vector Machines (SVMs)

Hinge Loss

[(y) = max(0,1 + max{f,x — 6,x})
y+t

G:D X0
EsV XD

.
Linear Program

Half-spaces

Flight Paths



ML and Learning Theory as Learning Systems

c X
<Y Empirical Measure of Risk
c X
cX XY, D (I G:D X0
EV XD
.1.D. l o = 0O
Supervised Learnin Minimization of Empirical
P & X Y Measure of Risk over 0

” H g using D

Unsupervised Learning

Empirical Risk Minimization
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