# Test and Evaluation of Reinforcement Learning Via Robustness Testing and Explainable AI

Dr. Ali K. Raz Assistant Professor System Engineering and Operations Research George Mason University araz@gmu.edu **Dr. Kyle Williams** Autonomous Sensing and Control Sandia National Labs

kwilli2@sandia.gov

Dr. Kris Ezra Research Scientist Center for Integrated Systems in Aerospace Purdue University kris@purdue.edu





PURDUE UNIVERSITY®

# Acknowledgement

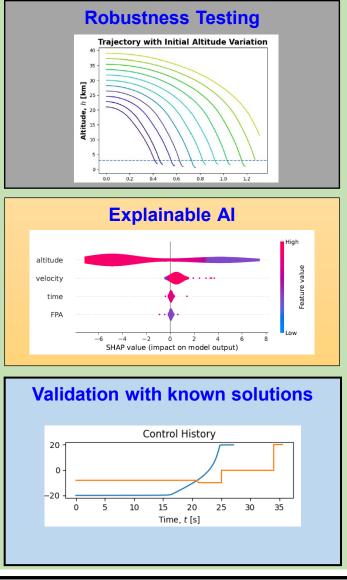
This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-mission laboratory managed and operated by the National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This work describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



# Motivation and Contributions

- Motivation:
  - Reinforcement Learning (RL) provides the ability to train an artificial intelligence (AI) agent to operate in dynamic uncertain environments
  - Impressive performance outcomes to learn nearly-optimal solutions in a variety of application domains
  - Limited testing and characterization of performance bounds of RL solutions
    - Impedes transition to real time systems
- Contributions of this work:
  - Develop a comprehensive Test and Evaluation Framework for RL
    Robustness Testing of RL solutions
    Understanding of RL decision making via Explainable AI
    Validation of RL solutions
  - Demonstrate application of RL to high-speed aerospace vehicle mission
    Investigate uncertanity in flights parameters such as angle of attack, velocity, altitude, and flight path angle





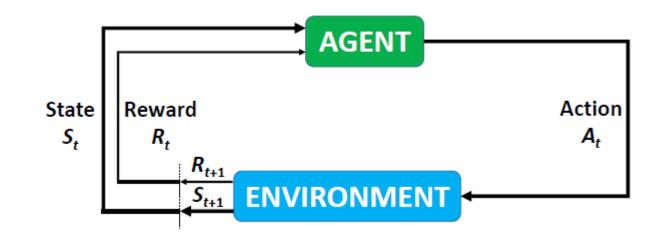
# Brief Introduction to Reinforcement Learning

### • What is RL?

- A methodology to allow an agent to learn what actions to take in dynamic and uncertain environments and learn the optimal behavior
- RL interacts with the simulation environment to achieve pre-defined goals
  - Achieving goals is rewarded
  - Learning occurs from exploration of environment and exploitation of reward

### • Pieces of an RL problem:

- State  $s_t$  of the environment
- Actions,  $a_t \in A$
- Reward,  $r_{t+1}(s_t, a_t)$  for action  $a_t$  at  $s_t$
- Policy,  $\pi_t(s, a)$ 
  - Selecting action  $a_t$  at state  $s_t$
  - Deterministic or Stochastic
- Implemented via RL algorithms



#### **Reinforcement Learning**

# The Need for RL Test and Evaluation (T&E)

 Once trained, RL agent is essentially a Deep Neural Network (DNN)

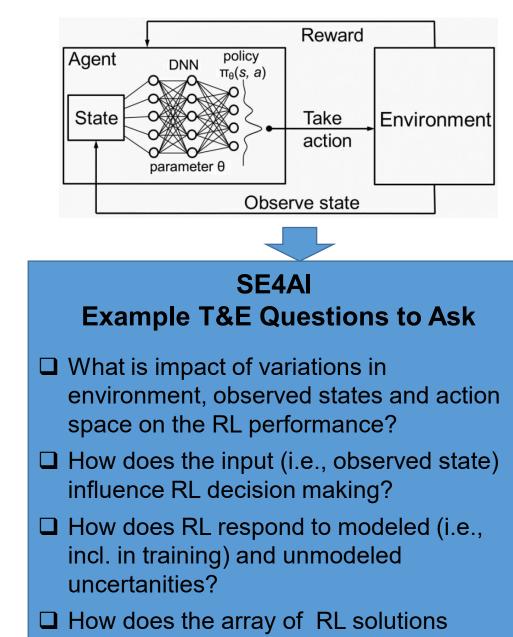
✓ Well-established performance outcomes

Limited characterization of performance bounds due to variations and uncertanities

Limited explanation of black-box decision-making logic

- Status-Quo of RL Testing:
  - ✓ Strong focus on RL implementation and comparing learning policies in different application domains
  - ✓ Selective demonstration of test cases, mostly based on Monte Carlo simulation and user selected variations

Limited evaluation of acceptable and unacceptable performance regions



compare to other accepted solutions?

# PROPOSED THREE PART T&E FRAMEWORK FOR RL

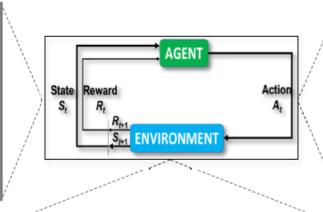
#### **Robustness Testing**

#### Purpose:

Sensitivity analysis of variations in action space, enviorment, and state observation **Methodology:** Design of Experiments and Statistical Analysis

Value:

Performance bounds and characterization of uncertanities



#### Explainable AI (XAI) Purpose: Determine influential features of trained RL decision-making logic Methodology: Post-hoc XAI method: Shapely Additive Explanations Value: Explain which state vector values contribute to RL decision and why sensitivities are present in robustness test

#### Compare to Known Solutions

#### Purpose:

Evaluate RL performance to known and accepted solutions

#### Methodology:

Problem space dependent; closed form mathematical solutions.

Value:

Validate RL performance and robustness testing results

#### **Remainder of this briefing:**

- 1. Formulate a high-speed aerospace mission suited for RL application
- 2. Apply the T&E Framework for analysis of RL-solution

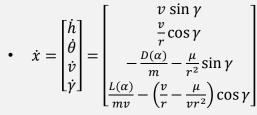
## HIGH-SPEED AEROSPACE MISSION DESCRIPTION

**Vehicle Model Parameters** 

• States:

*h*: altitude,  $\theta$ : downrange angle, *v*: velocity,  $\gamma$ : flight path angle

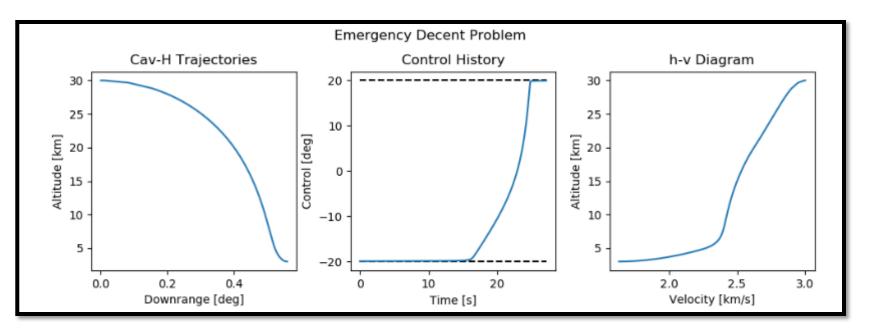
- **Control:**  $\alpha$ : angle of attack
- Dynamics:



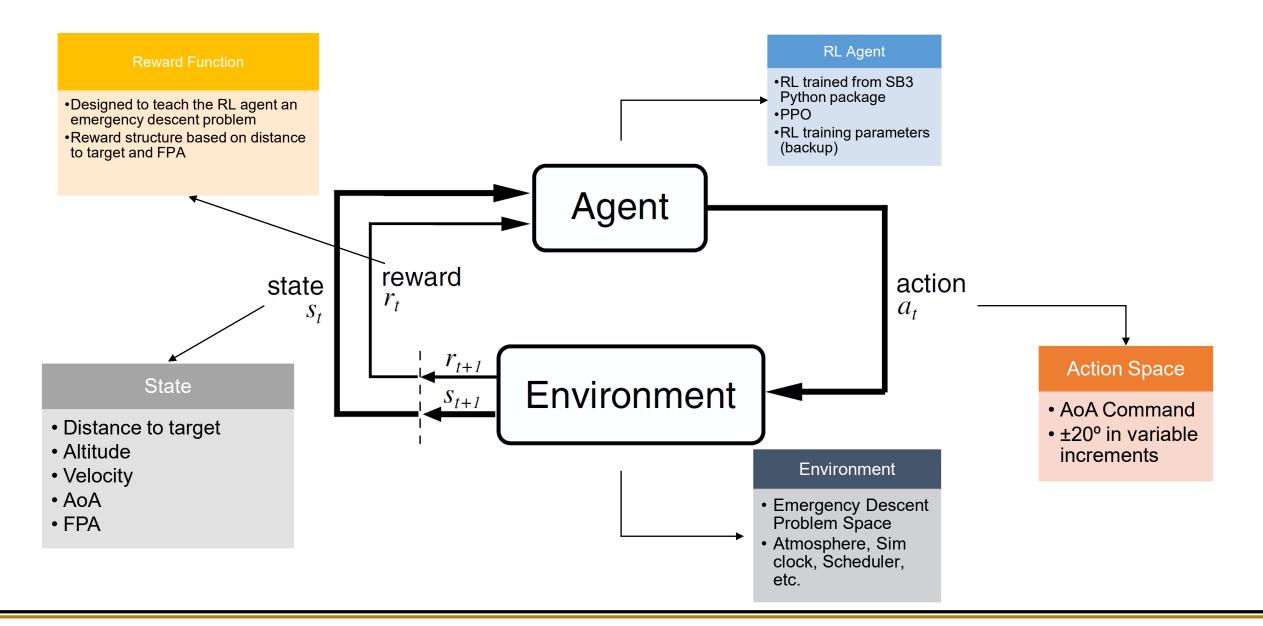
- **Objective:**  $J = \min t_f = \int_0^{t_f} dt$
- Initial Constraints:  $\Psi_0 = 0 = \begin{bmatrix} h - 30 \text{ km} \\ \theta \\ v - 3 \text{ km/s} \\ \gamma \end{bmatrix}_{t=1}^{t=1}$
- Path Constraint:  $|\alpha| \le 20^{\circ}$
- Terminal Constraints:  $\Psi_f = 0 = \begin{bmatrix} h & -3 \text{ km} \\ \gamma \end{bmatrix}_{t=t_f}$

## Emergency Descent Problem for an Untrusted High-Speed Vehicle

- The vehicle is at 30 km altitude and 3 km/s velocity needs to descend to level flight at a safe altitude (3 km) in minimum time
- Constraints must be satisfied at all times

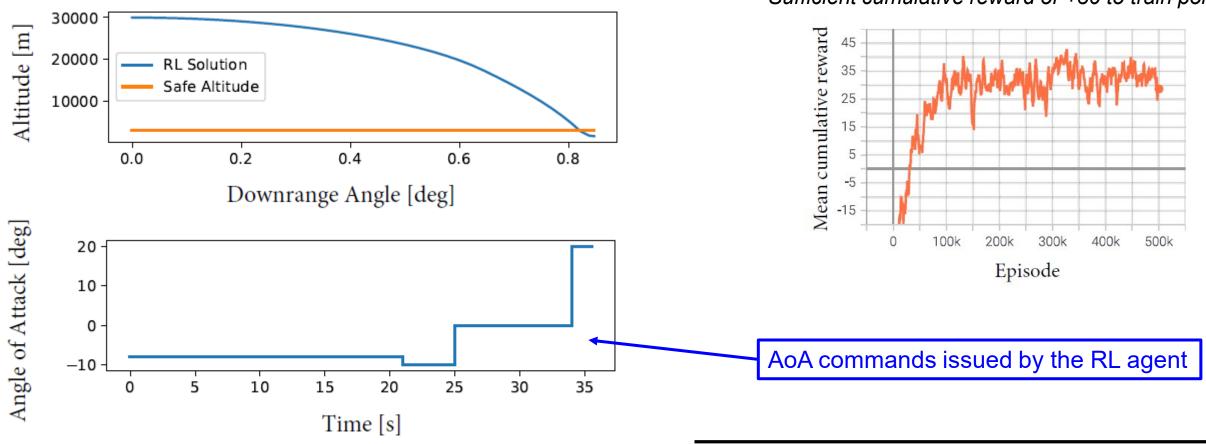


### **Reinforcement Learning Problem Formulation**



### RL RESULTS – NOMINAL CASE (VEHICLE DESCENT FROM 30KM TO 3KM)

- RL agent trained to provide AoA commands to guide the vehicle to safe altitude
  - Training included randomly sampling vehicle initial conditions
  - Training completed after 500k episodes



Sufficient cumulative reward of +30 to train policy

# Robustness Testing of RL Solutions

• Purpose: Identify sources of variation in RL problem space and quantify the impact on RL performance

#### **General Sources of Variations in RL**

| Source       | Nature of<br>Variation       | Modeling Approach<br>for RT                                                                   |
|--------------|------------------------------|-----------------------------------------------------------------------------------------------|
| Environment  | Initial<br>Conditions        | Latin Hypercube Sampling<br>Monte Carlo Simulations<br>Design of Experiments                  |
| Action Space | Tolerance<br>and Sensitivity | Expected probability<br>distribution with<br>parameters (e.g., $\mathcal{N}(\mu, \sigma^2)$ ) |
|              | Impulses<br>and Hard Overs   | Expected magnitude<br>and time duration                                                       |
| State Space  | Tolerance<br>and Sensitivity | Expected probability distribution with parameters (e.g., $\mathcal{N}(\mu, \sigma^2)$ )       |
|              | Impulses<br>and Hard Overs   | Expected magnitude and time duration                                                          |

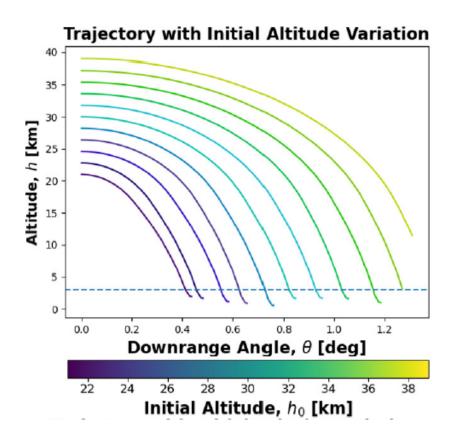
#### Derived Test Cases for High-Speed Vehicle RL Solution

| : | Test Cases   | Objective                                                                                             |
|---|--------------|-------------------------------------------------------------------------------------------------------|
| - | TC-1         | Individually vary environment Initial Con-<br>ditions (ICs) (i.e., altitude, velocity, FPA)           |
|   | TC-2         | to examine performance<br>Quantify performance bounds on ICs vari-<br>ation with LHS                  |
|   | TC-3<br>TC-4 | Sensitivity to impulses on action space<br>Sensitivity to random variation in action                  |
|   | TC-5<br>TC-6 | space<br>Sensitivity to impulses on state space<br>Sensitivity to random variations in state<br>space |

# Robustness Testing Results (TC 1 & 2)

#### TC-1 Modeling Approach:

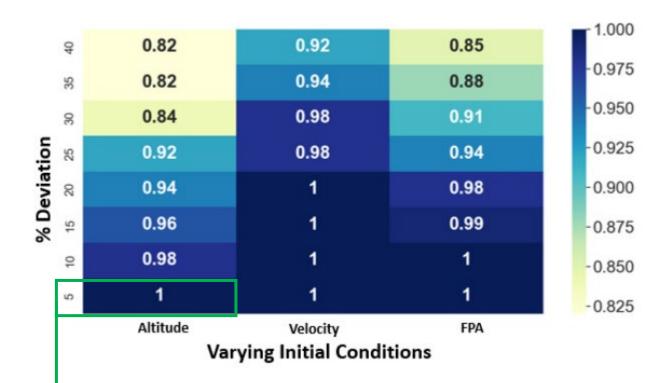
Exercise RL agent by randomly sampling ICs with pre-defined range; Results shown for 30% variations



#### Safe target altitude not reached from higher altitudes

#### TC-2 Modeling Approach:

Utilize Latin-Hypercube Sample to generate IC samples outside training bounds Results shows successful trajectories per 50 samples

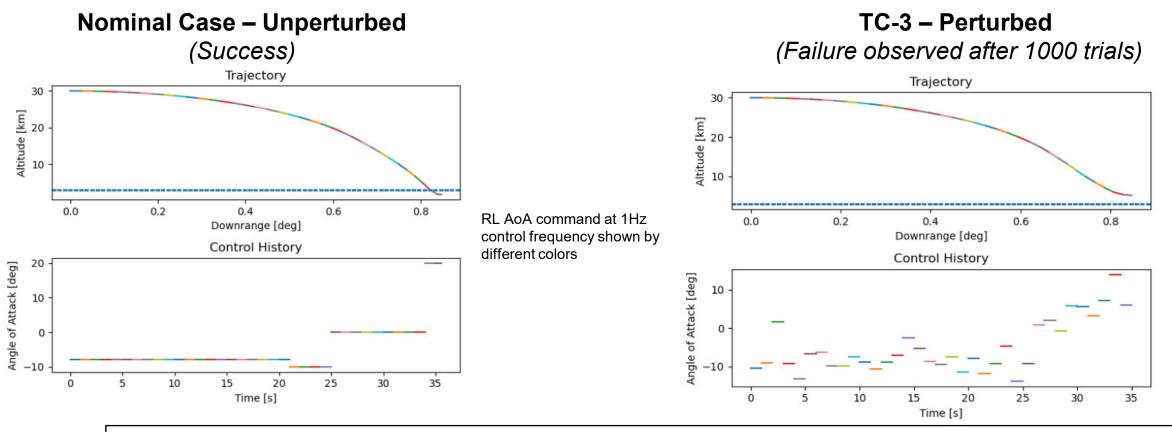


→ 100% success only within 5% of altitude variation

# Robustness Testing Results (TC 3)

**TC-3 Modeling Approach** 

Introduce random variation in action space, i.e., the AoA command randomly sampled within ±4°



Robustness Testing characterizes performance bounds on RL

Helps in setting operational requirements for RL and derived requirements for lower-level control systems.

## Examination Via Explainable AI (XAI) Techniques

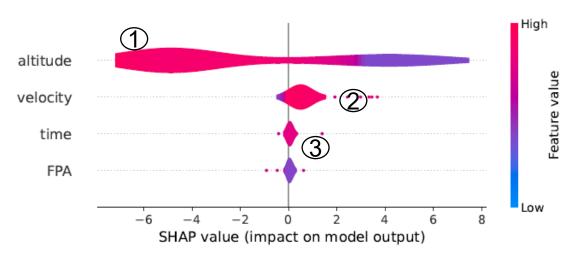
#### **Brief Introduction to Explainable AI**

- Investigates trained Deep Neural Network (DNN) models with analytical techniques to extract decision making attributes
- SHapley Additive exPlanations (SHAP)
  - State of the art for reverse engineering the output of any predictive model
  - Yields importance of input features for a given prediction
  - Focuses on coalitions in cooperative game theory



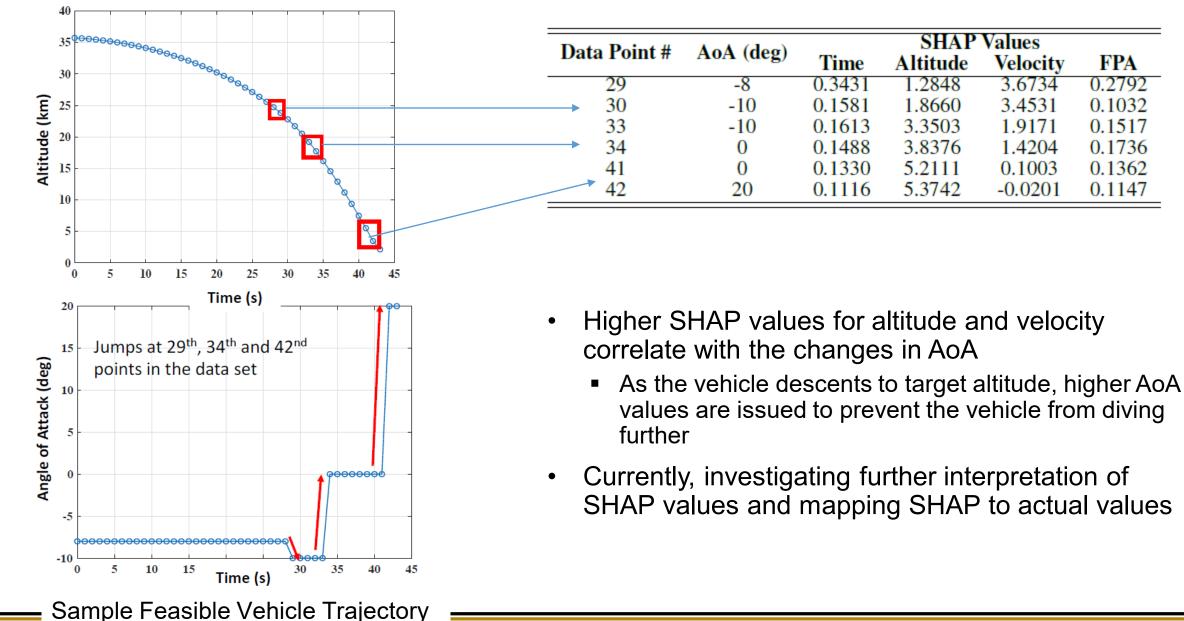
#### SHAP Applied to RL Problem

- Inputs: Time, Altitude, Velocity, and Flight Path Angle
- **Output:** Angle of Attack (between -20° and 20°)
- Number of trajectories: 1000
- **Objective:** Reach a particular target in a minimum time



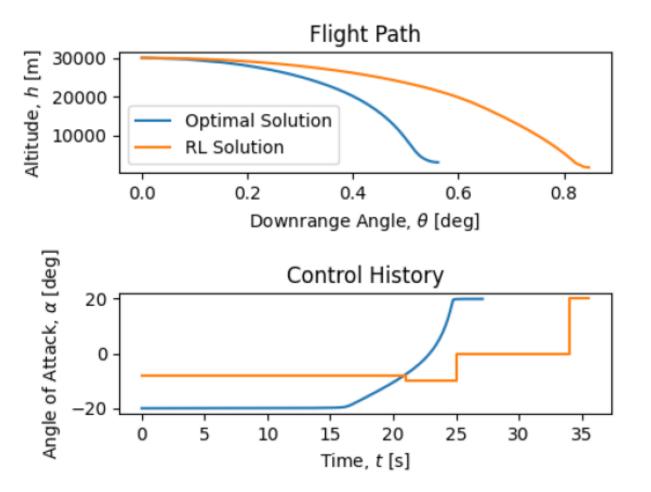
- 1
  - Higher altitude values oppose a change in AoA whereas low altitude support it.
- ② Higher velocity values positively influence change in AoA
- $\bigcirc$  FPA and Time have least impact.

# **REAL TIME ANALYSIS WITH SHAP**



and Control History Plot

### VALIDATION WITH OPTIMAL CONTROL SOLUTIONS



RL Results with PPO algorithm Training Options: Varying initial conditions 500K Episodes

Optimal Control solved by indirect methods using beluga package

RL agent approximates optimal solution Potential differences due to:

- RL solution is discrete action space
- OP solution is continuous action space
- Goal is not to exactly reproduce optimal trajectory

### TAKEAWAYS AND DISSEMINATION

- RL is being actively developed for applications in real time systems
  - From a System Engineering perspective, RL is a component that integrates with other system components
  - System Engineering approaches for test, evaluation, and validation are necessary to support RL transition in real systems
    - Performance evaluations that go beyond optimal leaning policy comparison and algorithm development
- Three-part RL Test and Evaluation Framework proposed in this work provides:
  - Robustness Testing of RL inspired by Systems Engineering for AI
  - Explainable AI to comprehend RL decision making
  - Validation of RL solutions with known solutions methods

#### Presentations:

- AIAA SciTech 2021: "Implementation of Hypersonic Motion Primitives for Reinforcement Learning Using Optimal Control Theory"
- AIAA Defense 2021: "Reinforcement Learning Techniques for Aerospace Vehicle Missions Through Predator and Prey Models"
- Publications: (Currently in work)
  - "Test and Evaluation Framework for Reinforcement Learning"; IEEE Aerospace Conference (Under review)
  - "Testing and Validation of Reinforcement Leaning in Aerospace Applications", AIAA 2022 Conferences (ETC: Fall 2022)

Our hope is to continue to refine this T&E framework and provide a methodology and tool set for other RL researchers to quantify effectiveness and limitations of RL-based solutions

# GMU-Purdue-Sandia Team Acknowledgement

#### PI and Co-PI





Dr. Ali Raz



Dr. Kris Ezra





Sean Nolan PhD Student

Winston Levin MS Student



Ahmad Mia

MS Student

**Current Graduate and Undergraduate Students** 



Ugrad / SNL Intern



Eli Sitchin **MS Student** 

TPOC



Dr. Kyle Williams

#### **Technical Staff**



Dr. Linas Mockus



**Rob Campbell** 

# Backup

### REINFORCEMENT LEARNING TRAINING CONFIGURATION

### **RL Training Setup**

#### **RL Hyperparameters**

| $\boldsymbol{x}_{0} = \begin{bmatrix} h_{0} \\ \theta_{0} \\ v_{0} \\ \gamma_{0} \end{bmatrix} \sim \mathcal{N} \left( \begin{bmatrix} 30,000 \text{ m} \\ 0^{\circ} \\ 3,000 \text{ m/s} \\ 0^{\circ} \end{bmatrix}, \begin{bmatrix} 5,000 \text{ m} \\ 0^{\circ} \\ 500 \text{ m/s} \\ 2.5^{\circ} \end{bmatrix} \right)$ |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\bar{h} = \left  \frac{h - h_{target}}{h_0 - h_{target}} \right $                                                                                                                                                                                                                                                          |  |  |  |  |
| $\bar{t} = t/t_{max}$                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| $\bar{\gamma} =  \gamma/5^{\circ} $                                                                                                                                                                                                                                                                                         |  |  |  |  |

| Ę   | (   | 8 |
|-----|-----|---|
| ема | J   |   |
| e<  | - 1 |   |
| Ŕ   | - 1 |   |

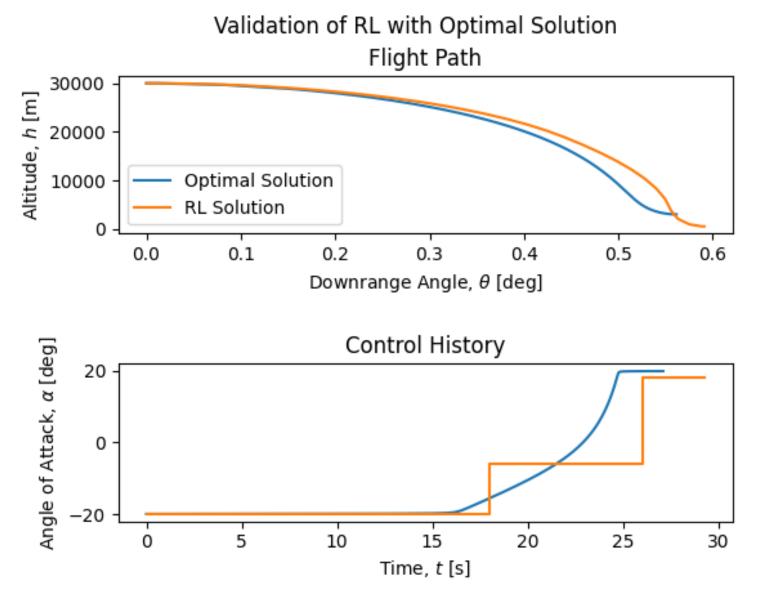
| $80(1-\bar{t})+20(1-\bar{\gamma})$                | if |
|---------------------------------------------------|----|
| $-100\bar{h} + 16(1-\bar{t}) + 4(1-\bar{\gamma})$ | if |
| $-\bar{h}$                                        | 0  |

if done, success if done, ¬ success otherwise

| Hyperparameter    | Value                  |  |
|-------------------|------------------------|--|
| $batch\_size$     | 64                     |  |
| $n\_steps$        | 512                    |  |
| gamma             | 0.9700959605924205     |  |
| $learning\_rate$  | 0.00010751473610906142 |  |
| $ent\_coeff$      | 0.001489192868297319   |  |
| $clip\_range$     | 0.11696450376676784    |  |
| $n\_epochs$       | 20                     |  |
| $gae\_lambda$     | 0.8862438354037199     |  |
| $max\_grad\_norm$ | 4.652723150289042      |  |
| $vf\_coef$        | 0.6590547382769023     |  |
| $net\_arch$       | medium                 |  |
| $activation_fn$   | tanh                   |  |

- The Optuna package for Python was used to optimize the hyperparameters governing the PPO training.
- Using 64 trials with 200,000 steps was sufficient to produce good hyperparameters for training. After optimizing the hyperparameters, the DNN was trained for 500,000 episodes.

# VALIDATION WITH OPTIMAL TRAJECTORIES – SINGLE POINT TRAINING



RL Results with PPO algorithm Control Options: Training for nominal CASE NO Variation in Training ICs

### **BACK-UP TEST CASE RESULTS**

