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Motivation and Contributions
• Motivation: 

• Reinforcement Learning (RL) provides the ability to train an artificial 
intelligence (AI) agent to operate in dynamic uncertain environments

• Impressive performance outcomes to learn nearly-optimal solutions in a 
variety of application domains

• Limited testing and characterization of performance bounds of RL solutions
• Impedes transition to real time systems

• Contributions of this work: 

• Develop a comprehensive Test and Evaluation Framework for RL
Robustness Testing of RL solutions 
Understanding of RL decision making via Explainable AI
Validation of RL solutions 

• Demonstrate application of RL to high-speed aerospace vehicle mission 
 Investigate uncertanity in flights parameters such as angle of attack, 

velocity, altitude, and flight path angle
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Robustness Testing

Validation with known solutions

Explainable AI

Test & Evaluation Framework 
for Reinforcement Learning



Brief Introduction to Reinforcement Learning
• What is RL?

• A methodology to allow an agent to learn what actions to take in dynamic and uncertain 
environments and learn the optimal behavior

• RL interacts with the simulation environment to achieve pre-defined goals
• Achieving goals is rewarded 
• Learning occurs from exploration of environment and exploitation of reward

• Pieces of an RL problem:
• State 𝑠𝑠𝑡𝑡 of the environment 
• Actions, 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴
• Reward, 𝑟𝑟𝑡𝑡+1(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) for action 𝑎𝑎𝑡𝑡 at 𝑠𝑠𝑡𝑡
• Policy, 𝜋𝜋𝑡𝑡 𝑠𝑠, 𝑎𝑎

• Selecting action 𝑎𝑎𝑡𝑡 at state 𝑠𝑠𝑡𝑡
• Deterministic or Stochastic

• Implemented via RL algorithms
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Reinforcement Learning



The Need for RL Test and Evaluation 
(T&E)

• Once trained, RL agent is essentially a Deep Neural Network 
(DNN)

Well-established performance outcomes

Limited characterization of performance bounds due to 
variations and uncertanities

Limited explanation of black-box decision-making logic 

• Status-Quo of RL Testing: 

Strong focus on RL implementation and comparing 
learning policies in different application domains

Selective demonstration of test cases, mostly based on 
Monte Carlo simulation and user selected variations

Limited evaluation of acceptable and unacceptable 
performance regions
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SE4AI 
Example T&E Questions to Ask

 What is impact of variations in 
environment, observed states and action 
space on the RL performance?

 How does the input (i.e., observed state) 
influence RL decision making?

 How does RL respond to modeled (i.e., 
incl. in training) and unmodeled 
uncertanities?

 How does the array of  RL solutions 
compare to other accepted solutions?



PROPOSED THREE PART T&E FRAMEWORK FOR RL
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Remainder of this briefing: 
1. Formulate a high-speed aerospace 

mission suited for RL application  
2. Apply the T&E Framework for 

analysis of RL-solution



HIGH-SPEED AEROSPACE MISSION DESCRIPTION

Emergency Descent Problem for an Untrusted High-
Speed Vehicle 
 The vehicle is at 30 km altitude and 3 km/s velocity needs to 

descend to level flight at a safe altitude (3 km) in minimum time

 Constraints must be satisfied at all times

Vehicle Model Parameters
• States:

ℎ: altitude, 𝜃𝜃: downrange 
angle,
𝑣𝑣: velocity, 𝛾𝛾: flight path angle

• Control: 𝛼𝛼: angle of attack
• Dynamics:

• �̇�𝑥 =
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�̇�𝑣
�̇�𝛾

=
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• Objective: 𝐽𝐽 = min 𝑡𝑡𝑓𝑓 = ∫0
𝑡𝑡𝑓𝑓 𝑑𝑑𝑡𝑡

• Initial Constraints:

Ψ0 = 0 =

ℎ − 30 km
𝜃𝜃

𝑣𝑣 − 3 km/𝑠𝑠
𝛾𝛾 𝑡𝑡=𝑡𝑡0

• Path Constraint:
𝛼𝛼 ≤ 20°

• Terminal Constraints:
Ψ𝑓𝑓 = 0 = ℎ − 3 km

𝛾𝛾 𝑡𝑡=𝑡𝑡𝑓𝑓
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REINFORCEMENT LEARNING PROBLEM FORMULATION

RL Agent

•RL trained from SB3 
Python package

•PPO 
•RL training parameters 
(backup)

Action Space

• AoA Command
• ±20º in variable 

increments
Environment

• Emergency Descent 
Problem Space

• Atmosphere, Sim 
clock, Scheduler, 
etc.

State

• Distance to target
• Altitude
• Velocity
• AoA
• FPA

Reward Function

•Designed to teach the RL agent an 
emergency descent problem

•Reward structure based on distance 
to target and FPA
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RL RESULTS – NOMINAL CASE (VEHICLE DESCENT FROM 30KM TO 3KM)

• RL agent trained to provide AoA commands to guide the vehicle to safe altitude
 Training included randomly sampling vehicle initial conditions
 Training completed after 500k episodes
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AoA commands issued by the RL agent

Sufficient cumulative reward of +30 to train policy



Robustness Testing of RL Solutions

• Purpose: Identify sources of variation in RL problem space and quantify the 
impact on RL performance
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General Sources of Variations in RL
Derived Test Cases for High-Speed 

Vehicle RL Solution



Robustness Testing Results (TC 1 & 2)
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TC-1 Modeling Approach: 
Exercise RL agent by randomly sampling ICs with 
pre-defined range; Results shown for 30% variations

Safe target altitude not reached from higher altitudes

TC-2 Modeling Approach: 
Utilize Latin-Hypercube Sample to generate IC 
samples outside training bounds
Results shows successful trajectories per 50 samples

Results for additional test cases in backup 

100% success only within 5% of altitude variation



Robustness Testing Results (TC 3)
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TC-3 Modeling Approach
Introduce random variation in action space, i.e., the AoA command 
randomly sampled within ±4 ͦ

Results for additional test cases in backup 

Nominal Case – Unperturbed
(Success)

TC-3 – Perturbed 
(Failure observed after 1000 trials)

Robustness Testing characterizes performance bounds on RL
Helps in setting operational requirements for RL and derived requirements for lower-level control systems.

RL AoA command at 1Hz 
control frequency shown by 
different colors



Examination Via Explainable AI (XAI) Techniques

• Investigates trained Deep Neural Network 
(DNN) models with analytical techniques to 
extract decision making attributes

• SHapley Additive exPlanations (SHAP)
 State of the art for reverse engineering the 

output of any predictive model
 Yields importance of input features for a given 

prediction
 Focuses on coalitions in cooperative game 

theory

Brief Introduction to Explainable AI SHAP Applied to RL Problem 
• Inputs: Time, Altitude, Velocity, and Flight Path Angle
• Output: Angle of Attack (between -20˚ and 20˚)
• Number of trajectories: 1000
• Objective: Reach a particular target in a minimum time

Higher altitude values oppose a change in AoA whereas low 
altitude support it.

1

2

3

1

2

3

Higher velocity values positively influence change in AoA

FPA and Time have least impact. 
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REAL TIME ANALYSIS WITH SHAP

• Higher SHAP values for altitude and velocity 
correlate with the changes in AoA
 As the vehicle descents to target altitude, higher AoA

values are issued to prevent the vehicle from diving 
further

• Currently, investigating further interpretation of 
SHAP values and mapping SHAP to actual values

Sample Feasible Vehicle Trajectory 
and Control History Plot



VA L I D A T I O N W I T H OP T I M A L CO N T R O L
SO L U T I O N S

RL agent approximates optimal solution
Potential differences due to:

o RL solution is discrete action space
o OP solution is continuous action space
o Goal is not to exactly reproduce 

optimal trajectory

RL Results with PPO algorithm
Training Options:

Varying initial conditions
500K Episodes

Optimal Control solved by indirect 
methods using beluga package



TAKEAWAYS AND DISSEMINATION
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• RL is being actively developed for applications in real time systems
• From a System Engineering perspective, RL is a component that integrates with other system components
• System Engineering approaches for test, evaluation, and validation are necessary to support RL transition in 

real systems
• Performance evaluations that go beyond optimal leaning policy comparison and algorithm development

• Three-part RL Test and Evaluation Framework proposed in this work provides:
• Robustness Testing of RL inspired by Systems Engineering for AI 
• Explainable AI to comprehend RL decision making 
• Validation of RL solutions with known solutions methods 
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n • Presentations: 

• AIAA SciTech 2021: “Implementation of Hypersonic Motion Primitives for Reinforcement Learning Using Optimal Control Theory”
• AIAA Defense 2021: “Reinforcement Learning Techniques for Aerospace Vehicle Missions Through Predator and Prey Models”

• Publications: (Currently in work) 
• “Test and Evaluation Framework for Reinforcement Learning”; IEEE Aerospace Conference (Under review)
• “Testing and Validation of Reinforcement Leaning in Aerospace Applications”, AIAA 2022 Conferences (ETC: Fall 2022)
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Our hope is to continue to refine this T&E framework and provide a methodology and tool set 
for other RL researchers to quantify effectiveness and limitations of RL-based solutions
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REINFORCEMENT LEARNING TRAINING CONFIGURATION

RL Training Setup

R
ew
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d
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RL Hyperparameters

• The Optuna package for Python was used to optimize the 
hyperparameters governing the PPO training.

• Using 64 trials with 200,000 steps was sufficient to 
produce good hyperparameters for training. After 
optimizing the hyperparameters, the DNN was trained for 
500,000 episodes.



VALIDATION WITH OPTIMAL TRAJECTORIES – SINGLE POINT 
TRAINING

RL Results with PPO algorithm
Control Options:

Training for nominal CASE
NO Variation in Training ICs
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BACK-UP TEST CASE RESULTS
RL unable to recover if an impulse was 
applied during the 25-30 second window;
No impact was found for moderate 
impulses in 0-20 seconds
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