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Research Motivation

❑ Systems Engineers make decisions to enable the creation of a system.
❑ The goodness of a decision is often measured by assessing the resulting system.
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Research Motivation

❑ Meaningful assessments and rigorous decision-making processes enable repeatable and 
justifiable decision-making.

❑ Assessments allow present and future stakeholders to understand why alternatives were 
selected.
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Research Motivation

❑ The focus of this research is on improving assessments for systems that incorporate AI.
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Research Challenge

❑ Systems incorporating AI:
⮚ are inherently interdisciplinary;
⮚ typically have many different stakeholders;
⮚ have additional uncertainties compared to the same system without AI.

❑ Such complex challenges need to be addressed using integrated interdisciplinary approaches

❑ Research Goal:
⮚ Develop a comprehensive framework for assessing the efficacy of AI in human agent teams 

by integrating computer science, psychological, and engineering approaches.
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Research Objectives

❑ Overall Objective: Improve assessment of AI incorporated systems

❑ Perceived difficulty in assessing AI incorporated systems may be due to perceived system 
characteristics including:
⮚ Evolving behaviors
⮚ Immeasurable maintenance metrics
⮚ User acceptance and adoption problems
⮚ Vagueness in system decision making
⮚ Challenges in integrating with legacy systems
⮚ Etc.
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Research Objectives

❑ This work focuses on 3 perceived characteristics of AI incorporated systems that impact the 
ability for assessment.

❑ Specific objectives of this research are:
⮚ Define reliability and identify appropriate measures
⮚ Form techniques to explain AI decisions and the decision-making process to users
⮚ Identify sources of emergent behaviors in AI incorporated systems
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Objective A: Reliability

Define reliability and identify 
appropriate measures
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Reliability: The Problem

❑ Reliability is a foundational concept for effective human-machine teaming 

❑ Reliability is used differently by different disciplines

❑ As stakeholders identify requirements, and as researchers & designers/developers work to 
adhere to these requirements, there needs to be clarity about what “reliability” means

❑ We need to know:
⮚ Is use of ‘reliability’ consistent within domains? 
⮚ Is the use of ‘reliability’ consistent with definitions used by specific domains?
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Reliability: Methodology

❑ Literature Review
⮚ Multidisciplinary
⮚ Identify what definitions of reliability are 

being used
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Reliability: Results

❑ Literature Review
⮚ Two main categories for definitions emerged:

o Performance based
▪ DoD: “... a measure of the probability that the system will perform without failure 

over a specific interval, under specified conditions”
▪ Business: “... the degree to which a piece of accounting information objectively 

represents an underlying economic construct.”
o Consistency based

▪ Psychology: “... a measure of the likelihood of getting the same result if an 
experiment or observation is repeated…”

⮚ The categories tend to align with discipline
o E.g., engineering is more performance based, whereas psychology refers to more 

consistency based
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Reliability: Results

❑ Literature Review
⮚ Sometimes inconsistencies within disciplines
⮚ For example in Engineering:

o “... the probability that an item will perform its intended function for a specified interval 
under stated conditions” (Performance)

o “... data that has reliability reflect stable and consistent data collection processes and 
analyses over time” (Consistency)

⮚ or in Human Factors:
o “Repeatability or consistency, a measure of the likelihood of getting the same result if an 

experiment or observation is repeated” (Consistency)
o “...the probability that automation performs its assigned tasks correctly.” (Performance)
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Reliability: Methodology

❑ Survey
⮚ Understand how practitioners are defining 

reliability
⮚ Identify discrepancies between what was 

identified in literature review & use of term 
in practice
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Reliability: Methodology

Design Survey

Identify 
Participants

Collect Data

Analyze Data

Demographics & Experience

Questions
- Define reliability in your own words as it relates to 

Autonomy and AI 
- What constitutes “good” reliability? 
- What constitutes “bad” reliability? 
- How do you assess reliability?
- What factors affect reliability in an autonomous 

system? 
- What are the consequences, in your field, if the 

system is unreliable? 
- Rank importance of terms 

- Time, consistency, stability, repeatability, 
outcome (binary: pass/fail), probability of 
success, fairness, accountability, 
transparency, accuracy, ease of use

- Present various definitions of reliability and make 
them choose which they prefer.

- Follow up to previous, what did you like about 
that definition, and what needs to change?

- Present them with their prior definition of 
reliability, and ask if there is anything else they 
would want to change about it?
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Reliability: Methodology

Design Survey

Identify 
Participants

Collect Data

Analyze Data
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Reliability: Methodology

Design Survey
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Reliability: Results

❑ Preliminary Survey Results

Higher Importance Lower Importance

Preliminary results indicate more importance given to 
“consistency” than to “performance”
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Reliability: Takeaways

❑ The term ‘reliability’ is used both technically and colloquially 
⮚ Different disciplines use the term differently

o However, there are discrepancies within discipline as well

❑ Preliminary results from the survey indicate that there also may be substantial disagreement 
within how practitioners use the term

❑ There needs to be consistent use of the term to avoid miscommunications

❑ There also needs to be a clarification of how key concepts (like reliability) apply to increasingly 
advanced AI systems moving forward
⮚ Need to understand how we assess these systems 
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Objective B: Explaining AI

Form techniques to explain AI 
decisions and the decision-

making process to users
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Explaining AI: The Problem

❑ Explainable AI can provide more insights to the user regarding the AI’s decision-making process

❑ Questions:
⮚ What does explainable AI, transparent AI, and like terms mean?
⮚ How does incorporation of explainable AI approaches influence users trust in automation, 

improve human-AI teaming?
⮚ How to integrate transparent AI/ML approaches for a trustworthy human-AI decision support 

system?
⮚ Can explainable AI decision support systems increase user attention, user interaction, and 

promote situation awareness ?

❑ One suggested way to implement this transparency is to present users with information about 
system’s ability to perform tasks in the immediate future
⮚ However, humans are inherently limited in ability to understand probabilities
⮚ We need to understand how users of a system may interpret probability of failure forecasted 

into the future
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Explaining AI: Methodology

❑ Problem broken into three parts:
⮚ Literature review of key terms
⮚ Create testing environment
⮚ User study

❑ Literature review of academic, industry, and government sources.
⮚ Focus on: 

o Explainable AI
o Interpretable ML
o Transparent ML
o Comprehensible ML.
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Explaining AI: Results - Definitions

❑ What is Explainable AI?
⮚ Some federal agencies have similar ideas:

o NASA (Explainable and Transparent) - Solutions must clearly state if, when, and how an 
AI system is involved, and AI logic and decisions must be explainable. AI solutions must 
protect intellectual property and include risk management in their construction and use. 
AI systems must be documented. [1]

o DoD (Explainable AI) - Enable human users to understand, appropriately trust, and 
effectively manage the emerging generation of artificially intelligent partners. [2]

o DHS (Explainable AI) - In all cases in which AI is used, operational assessments of 
potential risk and harm, the magnitude of those risks and harms, the technical state of 
the art, and the potential benefits of the AI system must be substantiated to facilitate 
both explainability and transparency.  [3]

o DoE (Explainability) - the ability to understand the mechanics of machine or deep 
learning algorithms. [4]
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Explaining AI: Results - Definitions

❑ What is Explainable AI?
⮚ Core technologies involved

o Machine Learning
▪ State-of-the-art robotics leverage modern machine learning technology [5]

o Human Computer Interaction
▪ Introducing Human-AI teams involves Human-AI interactions

o End User Explanation
▪ Enable end users to understand, appropriately trust, and effectively manage the 

emerging generation of AI systems [6]



THE UNIVERSITY OF ALABAMA IN HUNTSVILLE 27

Explaining AI: Results - Definitions

❑ Non-exhaustive list of commonly used explainable models, categorized by their type of 
explanation under the topics provided by DARPA [2]
⮚ Deep Explanations

o Method: Model complex behavior by constructing simpler (more interpretable) models
o Deconvolutional Networks [12], Mimic Models [13]

⮚ Interpretable Models
o Method: Follow decision path by examining the model directly
o Bayesian Rule Lists [14], Bayesian Program Learning [15], Decision Trees [16]

⮚ Model Induction
o Method: Evaluate what the model learns during training
o LIME [17], SHAP [18], STACI [19]
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Explaining AI: Results - Definitions

❑ Principles of Explanatory Debugging to Personalize Interactive Machine Learning [20], 
Explanations should:
⮚ Be Iterative

o Explanations should be presented in “bites” of information. A user can consume “bites” 
over multiple iterations to increase mental-model fidelity.

⮚ Be Sound
o “Explanations should not be simplified by explaining the model as if it were less complex 

than it actually is.”
⮚ Be Complete

o “a complete explanation does not omit important information about the model.”
⮚ Not Overwhelm

o “Balanced against the soundness and completeness principles is the need to remain 
comprehensible and to engage user attention.”
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Explaining AI: Methodology - Environment

❑ Create testing environment
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Explaining AI: Results - Environment

❑ Combat Search and Rescue (CSAR) Scenario 

CSAR Drone InterfaceCSAR Player Interface Drone POV – Hostage Spotting

http://drive.google.com/file/d/1T7fR4yS0VWCqgpeDJ4v7_teSgrXj9KAH/view
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Explaining AI: Results - Environment

❑ Active research on Unity environmental design for simulation of autonomous human-AI 
interaction scenarios: drone-AI based target detection, explainable AI integration
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Explaining AI: Results - Environment

❑ Active research on autonomous human-AI interaction scenarios: explainable AI integration, 
drone-AI path navigation, human-AI teaming, situational awareness
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Explaining AI: Methodology – User Study

❑ Experiment run on qualtrics
⮚ Individuals shown forecasted probabilities
⮚ Then asked to rate how reliable such a 

system is (Not at all - Completely)
⮚ Asked to provide a numerical prediction of 

how many times the system would succeed 
if let run all the way through 100 times. 

❑ Final aspect is to ask participants when they 
would intervene if they were to intervene
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Explaining AI: Results – User Study

❑ Data collection still ongoing

❑ However, several competing hypotheses of how users may evaluate this reliability information
⮚ Accurate cumulative probability calculation
⮚ Area Under Curve (AUC)
⮚ Average reliability over time
⮚ Max/min reliability over time

❑ We are able to differentiate, based on data, what strategies people use to understand this 
information
⮚ We will be able to see how good they are, but also
⮚ Where biases in estimates of success rates exist and what features of the information 

presented can impact behaviors 
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Explaining AI: Takeaways

❑ Explainable AI
⮚ Goal is to understand and answer the user’s questions

❑ Interpretable ML (Interpretability) 
⮚ Goal is to understand the object (or model) and its operation in general

❑ Transparent ML
⮚ Goal is to understand its training procedure, provenance of its parameters and the process 

governing its predictions
❑ Comprehensible ML

⮚ Goal is to provide a framework for considering comprehensibility in modeling to aid in 
identifying challenges and opportunities

❑ Although Explainable AI, interpretable ML and Transparent AI are used synonymously, they are 
different from the implementation focus such as task-oriented (Explainable AI, Interpretable ML) 
versus process-oriented (Transparent AI).
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Explaining AI Takeaways

❑ If we want explainable AI, we need to know not only what information needs to be explained, but 
how that explanation needs to be given

❑ This research will provide clarity about the nature of users’ understanding of probability as well 
as how it maps onto use/disuse behaviors
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Objective C: Emergent Behaviors

Identify sources of emergent 
behaviors in AI incorporated 

systems
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Emergent Behaviors: The Problem

❑ Systems incorporating AI are recognized as having “emergent behaviors”.
❑ Emergent Behavior - System behavior which is not apparent from separate analysis of 

subsystems.
⮚ Upper-bound: Behavior which wasn’t considered a possibility until observed after 

deployment.
⮚ Lower-bound: Behavior which is known, but difficult to predict exactly when it will occur from 

separate subsystem analyses.

Open AI's hide-and-seek experiment
https://openai.com/research/emergent-tool-use

Amazon’s use of AI in technical jobs hiring
https://live.staticflickr.com/8502/8325104250_9f46039d3f_b.jpg
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Emergent Behaviors: Methodology

❑ Research Question: How do you make engineering decisions when the behavior of systems 
incorporating AI has more uncertainty than similar systems without AI?

Literature Review - 
Emergent Behaviors from 
Selection of Training Data

Literature Review - 
Emergent Behaviors from 
Training and Validation 

Methods

Literature Review - 
Emergent Behaviors from 

Model Structure

Form Database on 
Emergent Behaviors

Analyze Data
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Emergent Behaviors: Early Findings

❑ Work on biases and emergent behavior often results in lists of previously observed phenomena.
❑ While useful for categorizing past events, these lists offer limited utility for forecasting and 

design.
❑ Process-oriented approaches can help better understand the complex interactions
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Emergent Behaviors: Takeaways

❑ Engineers need to understand how their decisions impact the assessment of the system.
❑ It is not enough to just understand that emergent behaviors exist, but we need to understand the 

origins of those emergent behaviors so we can identify the dials that impact the behaviors.
❑ A major challenge is establishing the relationship between the dials and the behaviors, and 

eventually to the assessment of the system.
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Next Steps

Next Steps and 
Conclusions
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Next Steps

Definition of Reliability

Methodology:
Aggregate literature review 

and survey findings to form a 
definition of reliability that 
spans disciplines and is 

actionable and measurable.

ML Model Interpretation

Methodology:
Identify existing or synthesize 
new interdisciplinary technique 

to simplify ML model 
interpretations, validated using 

user study experimentation.

Preliminary Value Model 
Formation

Methodology:
Form a value model for 

assessment of AI systems, 
with a focus on attributes 

related to emergent behaviors, 
reliability, and transparency.
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Expected Outcomes

❑ This on-going research is expected to support the formation of a comprehensive assessment 
framework for AI incorporated systems. 

❑ Specifically, this on-going research will produce: 
⮚ A reliability definition
⮚ Measures for reliability
⮚ Techniques to explain AI processes
⮚ Identification of origins of emergent behavior in AI incorporated systems.
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Broader Applications/Significance

❑ Broader Applications:
⮚ Assessment of AI incorporated systems is necessary for systems engineering. 
⮚ An assessment framework that is based on evidence to address key challenges in AI 

incorporated systems would likely move closer to being repeatable and justifiable. 
⮚ Such an assessment framework removes biases from stakeholders, resulting in decisions 

that can be argued less on opinions and more on evidence.

❑ Significance
⮚ Performs fundamental research on addressing challenges perceived to exist for AI 

systems. 
⮚ Helps establish a basis for future research on assessment frameworks. 
⮚ Provides insights on the validity of specific perceptions about AI incorporated systems.
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