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Superset of Collision Risk Functions

Thapa, A., J. Shortle, L. Sherry. 2023. Air-to-Air Collision Risk Models (CRM) in the Terminal Airspace. 
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Flight Trajectory Sources

• Historic tracks
– Limited data to observe / analyze rare events

• Simulated tracks
– Model may not capture full realism

• Synthetic tracks
– Potential to generate new (never been seen) tracks 

that are realistic and follow distributions of 
historic tracks (Krauth et al. 2023)
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Objective

• Investigate the feasibility of generating 
synthetic flight tracks using variational 
autoencoder and related methods
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Autoencoder

The bottleneck constrains the amount of information that can traverse the 
full network, forcing a learned compression of the input data.

bottleneck
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Variational Autoencoder

Provides a 
probabilistic manner 

for describing an 
observation in latent 

space
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Data Summary

• Location: Zurich Airport (LSZH)
• Year: 2019, 2 months
• Runway: 14
• Number of flights: 14,441
• Source: OpenSky Network
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Conceptual Summary

Historic and/or 
simulated flight 

tracks

Fundamental 
track building 

blocks (distance, 
speed, headings, 
segments, turn 

radii, etc.)

Encoder breaks 
tracks into segments / 
features and captures 

their variability

Decoder combines 
segments with 

different variability 
in a way that is 

compatible

Synthetic tracks
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Training Parameters 

• Architecture: Encoder and 
Decoder: 3 Layers (input, 128, 64, 
Bottleneck)

• Input = 600
• Bottleneck = 30
• ReLU
• Optimizer: Adam
• Batch size = 32
• Learning rate = 0.001
• Epoch = 1000
• Recon loss factor = 2.8
• KL loss factor = 0.001
• Ave. distance between real and 

synthetic test data = 0.5277 km
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Bottleneck size

Autoencoder error as a
function of bottleneck size
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Autoencoder Sample Output
Trained autoencoder

Test track
(not in training set)

Output track

Example input / 
output
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/

Trained 
autoencoder can 

replicate 
complicated 
arrival tracks

Example Results
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Historic Flight Tracks

Along-track Distance (nm)

Synthetic Flight Tracks

“Trombone” down-
wind leg and other 

extensions

Shortest path (unimpeded)

Flow managed tracks

Comparing Along-Track Distance 

Along-track Distance (nm)
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Variational Autoencoder Output
Trained variational autoencoder

Single track
(not in training set)

Multiple random
tracks 

100,000 generated 
flight tracks from 1 

seed track
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Distribution of Synthetic Tracks
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10000 synthetic tracks generated 

Even though seed track is not the mean, the VAE 
generates synthetic tracks according to the trained data set

Along-track 
distance of 
seed track

Along-track distance of track (nm)



Distribution of Synthetic Tracks
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Distribution learned by VAE may be centered / left-of / right-of 
seed track  

Along-track distance of track (km)



2,052 flight tracks from southwest

Runway 14

Training VAE on Flights from Southwest

Training
~1,800

Test ~200 Synthetic tracks

Historic tracks
Training
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Comparison of Along-track Distance

Test Tracks Synthetic Tracks
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Cross-Track Distance

• Total cross-track distance = sum of distances (point by point) 
from a given track to reference track

• Reference track = track that minimizes distance to other tracks  

Reference
track
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Comparison of Total Cross Track Distance
Distance between test tracks and 

reference track
Distance between synthetic 
tracks and reference track
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Lateral Dispersion

Rotated coordinate frame

Runway 14

9 nm
6 nm
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Comparison of Lateral Dispersion
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6 nm 9 nm

Historic

Synthetic
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Summary

• Trained multiple types of autoencoders on 
Zurich arrival tracks

• Autoencoders can replicate complicated 
arrival patterns (holding patterns, etc.)

• Variational autoencoders can generate random 
variations from seed tracks 

• Synthetic and historic tracks have similar 
distributions for some, but not all, metrics

22



Future Work and Challenges

• Comparison of collision risk metrics between 
synthetic and historical tracks
– Do synthetic tracks have the same “tails” as the real 

system? 
– Can synthetic tracks effectively generate the edge cases 

(e.g., missed approaches)
– Is it possible to quantify an effect track “multiplier”? (N

historic tracks can be used to generate K × N synthetic 
track)

• Evaluation of track data at other airports
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