

Walker Department of Mechanical Engineering

Cost-Aware Bayesian Agents for Human-Al Teaming

Siyu Chen¹, Dr. Zhenghui Sha²

Presenter: Siyu Chen October 12, 2023

¹ PhD student, Walker Department of Mechanical Engineering, The University of Texas at Austin

² Assistant Professor, Walker Department of Mechanical Engineering, The University of Texas at Austin

Outline

Introduction

Technical background

Method

Experiments

Conclusion and future work

Unknown design space exploration: find the best design solution step by step

► Unknown design space exploration: find the best design solution step by step → sequential decision-making process

Unknown design space exploration: find the best design solution step by step → sequential decision-making process
 How to model this process?

- Unknown design space exploration: find the best design solution step by step → sequential decision-making process
 How to model this process?
 - Unknown design space: a black-box function.

- Unknown design space exploration: find the best design solution step by step → sequential decision-making process
 How to model this process?
 - Unknown design space: a black-box function.

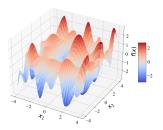


Figure: Black-box objective function

- ► Unknown design space exploration: find the best design solution step by step → sequential decision-making process
- How to model this process?
 - Unknown design space: a black-box function.
 - Unknown design space exploration: find the optimum by sequential sampling in this space.

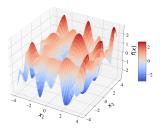


Figure: Black-box objective function

- Unknown design space exploration: find the best design solution step by step → sequential decision-making process
 How to model this process?
 - Unknown design space: a black-box function.
 - Unknown design space exploration: find the optimum by sequential sampling in this space.

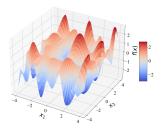


Figure: Black-box objective function

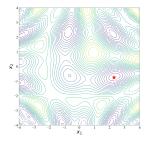


Figure: Contour plot

Single agent:

Single agent:

- solve design space exploration using Bayesian Optimization.

Single agent:

- solve design space exploration using Bayesian Optimization.
 - ► For *complex* design space, team effort is needed.

Single agent:

- solve design space exploration using Bayesian Optimization.
 - ► For *complex* design space, team effort is needed.

Multi-agent System (MAS):

Single agent:

- solve design space exploration using Bayesian Optimization.
 - ► For *complex* design space, team effort is needed.

Multi-agent System (MAS):

- mimics the human decision-making process in a design team.

Single agent:

- solve design space exploration using Bayesian Optimization.

► For *complex* design space, team effort is needed.

Multi-agent System (MAS):

- mimics the human decision-making process in a design team.

Challenges:

Single agent:

- solve design space exploration using Bayesian Optimization.
 - ► For *complex* design space, team effort is needed.

Multi-agent System (MAS):

- mimics the human decision-making process in a design team.

Challenges:

- In the design team, decisions made by one member could influence others \rightarrow collaboration and communication;

Single agent:

- solve design space exploration using Bayesian Optimization.
 - ► For *complex* design space, team effort is needed.

Multi-agent System (MAS):

- mimics the human decision-making process in a design team.

Challenges:

- In the design team, decisions made by one member could influence others \rightarrow collaboration and communication;
- Humans are cost-sensitive: budget, time, and resources.

Single agent:

- solve design space exploration using Bayesian Optimization.
 - ► For *complex* design space, team effort is needed.

Multi-agent System (MAS):

- mimics the human decision-making process in a design team.

Challenges:

- In the design team, decisions made by one member could influence others \rightarrow collaboration and communication;
- Humans are cost-sensitive: budget, time, and resources.

Single agent:

- solve design space exploration using Bayesian Optimization.

► For *complex* design space, team effort is needed.

Multi-agent System (MAS):

- mimics the human decision-making process in a design team.

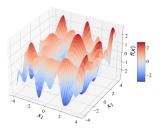
Challenges:

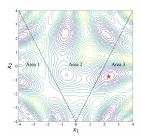
- In the design team, decisions made by one member could influence others \rightarrow collaboration and communication;
- Humans are cost-sensitive: budget, time, and resources.

 Develop a cost-aware MAS with collaboration and communication

Objective

- Develop a cost-aware Multi-agent System (MAS) with collaboration and communication based on Bayesian Optimization (BO) to model the sequential decision-making process of a design team in the exploration of complex design spaces.
 - Decision 1: where to sample next;
 - Decision 2: when to stop.





Research Questions (RQs)

- RQ1: How can the local-global communication influence the search performance (convergence speed) for the MAS in the varying scenarios considering
 - the complexity of the objective function;
 - the MAS team size?

Research Questions (RQs)

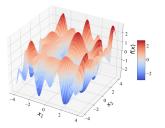
- RQ1: How can the local-global communication influence the search performance (convergence speed) for the MAS in the varying scenarios considering
 - the complexity of the objective function;
 - the MAS team size?
- RQ2: What impact would the cost-aware stopping criteria have on the search behavior of MAS?

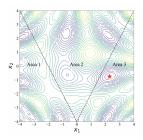
Problem Setups

Problem formulation

Consider a MAS consisting of N agents in a 2D design space domain A. The goal of agent is to find the location of the global optimum of a black-box function:

$$\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x} \in \mathcal{A}} f(\mathbf{x}) \tag{1}$$





Bayesian Optimization (BO)

Decision 1: where to sample next.

Bayesian Optimization (BO)

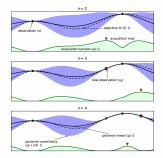
Decision 1: where to sample next.

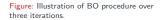
Gaussian Process^a:

model the unknown objective function.

Acquisition function: determine the next point to sample in the design space.

- Expected Improvement (EI)
- Lower Confidence Bound (LCB)^b





^a Rasmussen 2003.

^b Snoek, Larochelle, and Adams 2012.

Cost-aware stopping criterion

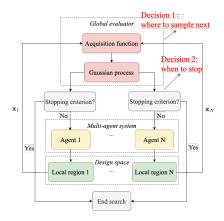
Decision 2: when to stop

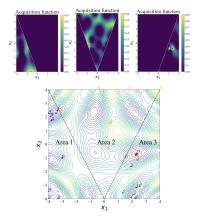
Cost-aware stopping criterion

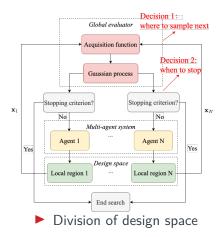
$$U = G - K * c, \tag{2}$$

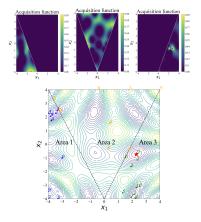
where $G = \sum_{k=0}^{K} (\alpha * PG + \beta * IG)$, *IG* is Information Gain, *PG* is Performance Gain, *K* is the iteration number, *c* is the cost for each search.

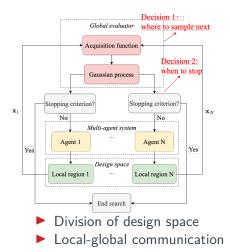
- **Performance Gain (PG)**: the gain already achieved, $PG = f_k^* - f_{k-1}^*$.
- Information Gain (IG): the potential gain can be achieved in the future, value of the acquisition function.
- **Cost-setting strategy**: Different cost for each agent.

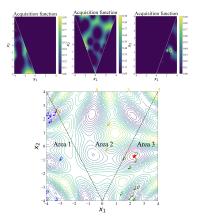


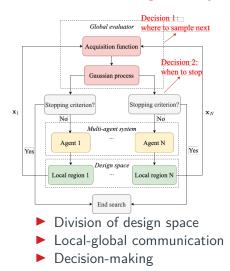


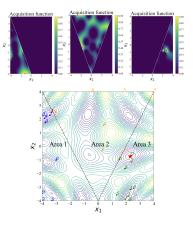


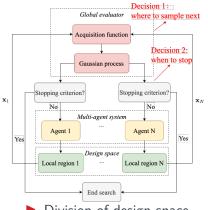


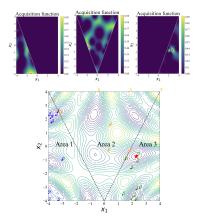




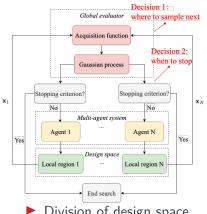


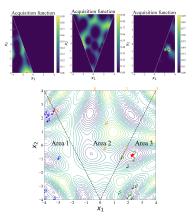






- Division of design space
- Local-global communication
- Decision-making \rightarrow Decision 1: where to sample next;





- Division of design space
- Local-global communication
- Decision-making \rightarrow Decision 1: where to sample next; Decision 2: whether to stop

- RQ1: How can local-global communication influence convergence speed?
 - complexity of the objective function
 - MAS team size

- RQ1: How can local-global communication influence convergence speed?
 - complexity of the objective function
 - MAS team size

Method comparison

- Method 1: the MABO process without a global evaluator;
- Method 2: the proposed MABO with a global evaluator enabled.

- RQ1: How can local-global communication influence convergence speed?
 - complexity of the objective function
 - MAS team size

Method comparison

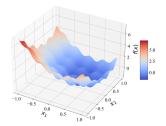
- Method 1: the MABO process without a global evaluator;
- Method 2: the proposed MABO with a global evaluator enabled.

Scenarios without stopping criterion

- MABO of the Cosines function with a MAS of three agents;
- MABO of the Eggholder function with a MAS of three agents;
- ► MABO of the Eggholder function with a MAS of five agents.

Scenarios without stopping criterion

- MABO of the Cosines function with a MAS of three agents
- MABO of the Eggholder function with a MAS of three agents
- MABO of the Eggholder function with a MAS of five agents
- Objective functions



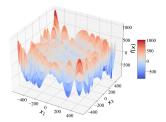


Figure: Eggholder function

Figure: Cosines function

Scenarios without stopping criterion

MABO of the Cosines function with a MAS of three agents

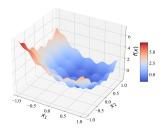


Figure: Cosines function

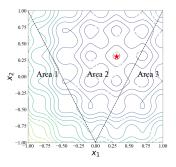


Figure: Space division

Scenarios without stopping criterion

MABO of the Cosines function with a MAS of three agents

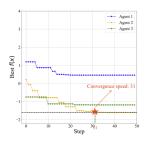


Figure: Convergence speed, Method 1

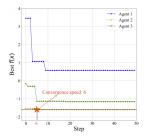


Figure: Convergence speed, Method 2

Observations:

- Faster convergence speed to the global optimum
- Faster convergence speed to local optimum for each agent

Scenarios without stopping criterion

MABO of the Eggholder function with a MAS of three agents

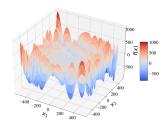


Figure: Eggholder function

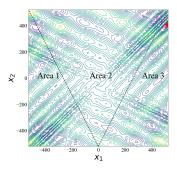


Figure: Space division

Scenarios without stopping criterion

MABO of the Eggholder function with a MAS of three agents

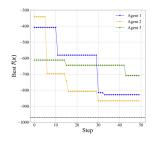


Figure: Convergence speed, Method 1

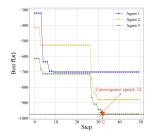


Figure: Convergence speed, Method 2

Observations:

- Faster convergence speed to the global optimum
- Faster convergence speed to local optimum for each agent

Scenarios without stopping criterion

- MABO of the Cosines function with a MAS of three agents
- MABO of the Eggholder function with a MAS of three agents

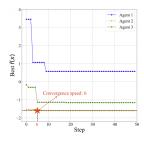


Figure: Convergence speed, Method 2

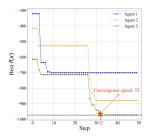


Figure: Convergence speed, Method 2

- Slower convergence speed when the complexity increases

Scenarios without stopping criterion

MABO of the Eggholder function with a MAS of five agents

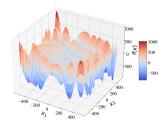


Figure: Eggholder function

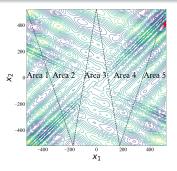


Figure: Space division

Scenarios without stopping criterion

MABO of the Eggholder function with a MAS of five agents

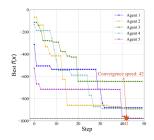


Figure: Convergence speed, Method 1

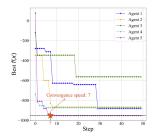


Figure: Convergence speed, Method 2

Observations:

- Faster convergence speed to the global optimum
- Faster convergence speed to local optimum except for Agent 3

Scenarios without stopping criterion

MABO of the Eggholder function with a MAS of five agents

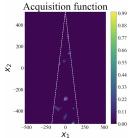


Figure: Acquisition function from Agent 3

0.11 -400 500 0.00

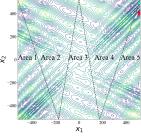


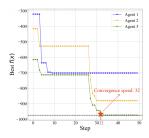
Figure: Space division

Observations:

- Faster convergence speed to the global optimum
- Faster convergence speed to local optimum except for Agent 3

Scenarios without stopping criterion

- MABO of the Eggholder function with a MAS of three agents
- MABO of the Eggholder function with a MAS of five agents



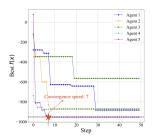


Figure: Convergence speed, Method 2

- Observation:
 - Faster convergence speed to the global optimum when the MAS team size increases

Experimental setup

Experimental setup

RQ2: What impact would cost-aware stopping criteria have on the search behavior of the MAS?

Cost-aware stopping criterion

$$U = G - K * C, \tag{3}$$

where $G = \sum_{k=0}^{K} (\alpha * PG + \beta * IG)$, *IG* is Information Gain, *PG* is Performance Gain, *K* is the iteration number, *C* is the cost for each search.

Experimental setup

RQ2: What impact would cost-aware stopping criteria have on the search behavior of the MAS?

Cost-aware stopping criterion

$$U = G - K * C, \tag{3}$$

where $G = \sum_{k=0}^{K} (\alpha * PG + \beta * IG)$, *IG* is Information Gain, *PG* is Performance Gain, *K* is the iteration number, *C* is the cost for each search.

Scenarios with cost-aware stopping criterion

- MABO of the Cosines function with a MAS of three agents;
- ► MABO of the Eggholder function with a MAS of three agents.

Scenarios with cost-aware stopping criterion

MABO of the Cosines function with a MAS of three agents

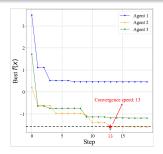


Figure: Convergence speed without stopping criterion

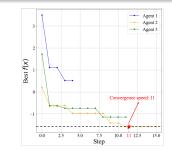


Figure: Convergence speed with cost-aware stopping criterion

Observation: Agent stopping early does not have a great impact on the convergence in a simple objective function.

Scenarios with cost-aware stopping criterion

► MABO of the Eggholder function with a MAS of three agents



Figure: Convergence speed without stopping criterion

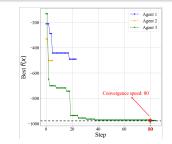


Figure: Convergence speed with cost-aware stopping criterion

 Observation: Agent stopping early could influences the convergence in a complex objective function.

Allowing global-local communication significantly improves convergence speed to the global optimum, but not necessarily to the local optimum for every agent.

Allowing global-local communication significantly improves convergence speed to the global optimum, but not necessarily to the local optimum for every agent.

MAS team size:

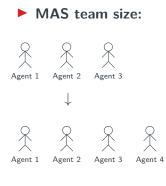
Allowing global-local communication significantly improves convergence speed to the global optimum, but not necessarily to the local optimum for every agent.

MAS team size:

Complexity of objective function

Allowing global-local communication significantly improves convergence speed to the global optimum, but not necessarily to the local optimum for every agent.

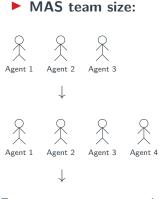
Agent 5



 Complexity of objective function

Allowing global-local communication significantly improves convergence speed to the global optimum, but not necessarily to the local optimum for every agent.

Agent 5

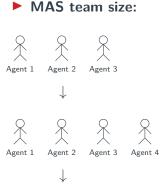


 Complexity of objective function

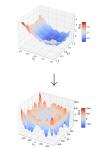
Faster convergence speed

Allowing global-local communication significantly improves convergence speed to the global optimum, but not necessarily to the local optimum for every agent.

Agent 5

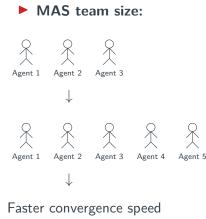


Complexity of objective function

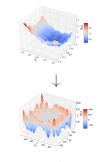


Faster convergence speed

Allowing global-local communication significantly improves convergence speed to the global optimum, but not necessarily to the local optimum for every agent.



Complexity of objective function



Slower convergence speed

Agent stops early would have a great impact on convergence in a complex objective function but not a simple objective function.

Agent stops early would have a great impact on convergence in a complex objective function but not a simple objective function.

For a design team, communication mechanisms and incentive structures for solution search shall be designed and tailored according to the complexity of the problem to be solved.

Agent stops early would have a great impact on convergence in a complex objective function but not a simple objective function.

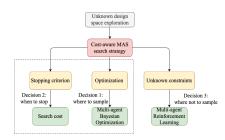
For a design team, communication mechanisms and incentive structures for solution search shall be designed and tailored according to the complexity of the problem to be solved.

Figure: Simple design

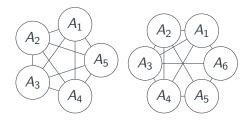
 Decision 3: where not to sample

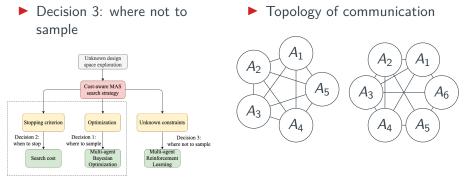


Decision 3: where not to sample

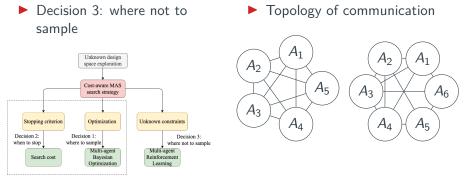


Topology of communication

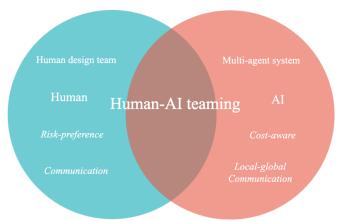




Allocate appropriate amount of initial funds or budget to take care of the risk-averse attitude of human designers and enhance team resilience.



- Allocate appropriate amount of initial funds or budget to take care of the risk-averse attitude of human designers and enhance team resilience.
- The impact of MAS team size on the cost-setting strategy.



Published paper

 S. Chen, A. E. Bayrak³, Z. Sha, "Multi-Agent Bayesian Optimization for Unknown Design Space Exploration", ASME 2023 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Boston, MA, Aug. 20-23, 2023.

³ Assistant Professor, School of Systems and Enterprises, Stevens Institute of Technology

Thank you!

We gratefully acknowledge the supports from

National Science Foundation

For more information, please contact: Siyu Chen at siyu.chen@utexas.edu

