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— Unknown design space: a black-box function.
— Unknown design space exploration: find the optimum by
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Figure: Black-box objective function Figure: Contour plot
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» Develop a cost-aware Multi-agent System (MAS) with
collaboration and communication based on Bayesian
Optimization (BO) to model the sequential decision-making
process of a design team in the exploration of complex design
spaces.

— Decision 1: where to sample next;
— Decision 2: when to stop.
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Research Questions (RQs)

> RQ1: How can the local-global communication influence the
search performance (convergence speed) for the MAS in the
varying scenarios considering
— the complexity of the objective function;
— the MAS team size?

» RQ2: What impact would the cost-aware stopping criteria
have on the search behavior of MAS?



The University of Texas at Austin

Cockrell School of Engineering

Problem Setups

Problem formulation

Consider a MAS consisting of N agents in a 2D design space
domain A. The goal of agent is to find the location of the global
optimum of a black-box function:

x* = argmingecaf (X) (1)
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Bayesian Optimization (BO)
Decision 1: where to sample next.

» Gaussian Process?:
model the unknown objective
function.

» Acquisition function:
determine the next point to sample
in the design space.

— Expected Improvement (EI)
— Lower Confidence Bound (LCB)®

? Rasmussen 2003.

b Snoek, Larochelle, and Adams 2012.

objective fn (1)

¥ _acauisiton max.

posterior uncertainty
ety

Figure: lllustration of BO procedure over
three iterations.
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Cost-aware stopping criterion

Decision 2: when to stop

Cost-aware stopping criterion

U=G—-Kxc, (2)

where G = YK _ (a * PG + 3 % IG), IG is Information Gain, PG is
Performance Gain, K is the iteration number, c is the cost for each
search.

» Performance Gain (PG): the gain already achieved,
PG =1 — ;.

» Information Gain (IG): the potential gain can be achieved in
the future, value of the acquisition function.

> Cost-setting strategy: Different cost for each agent.
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Cost-aware Multi-agent Bayesian Optimization

Acguisition function Acquisition function
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Experimental setup

Scenarios without stopping criterion

» MABO of the Cosines function with a MAS of three agents
» MABO of the Eggholder function with a MAS of three agents
» MABO of the Eggholder function with a MAS of five agents

» Objective functions

Figure: Cosines function

Figure: Eggholder function
12
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Experimental results

Scenarios without stopping criterion
» MABO of the Cosines function with a MAS of three agents

Figure: Cosines function X1

Figure: Space division

13
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» Observations:
— Faster convergence
— Faster convergence
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Figure: Convergence speed, Method 2
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Figure: Convergence speed, Method 1 Figure: Convergence speed, Method 2

» Observations:

— Faster convergence speed to the global optimum
— Faster convergence speed to local optimum for each agent
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Scenarios without stopping criterion

» MABO of the Cosines function with a MAS of three agents
» MABO of the Eggholder function with a MAS of three agents
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Figure: Convergence speed, Method 2 Figure: Convergence speed, Method 2

» Observation:
— Slower convergence speed when the complexity increases
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Experimental results

Scenarios without stopping criterion

> MABO of the Eggholder function with a MAS of five agents
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Figure: Convergence speed, Method 1 Figure: Convergence speed, Method 2

» Observations:

— Faster convergence speed to the global optimum
— Faster convergence speed to local optimum except for Agent 3
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Scenarios without stopping criterion
» MABO of the Eggholder function with a MAS of five agents
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Figure: Acquisition function from Agent 3 Figure: Space division

» Observations:
— Faster convergence speed to the global optimum
— Faster convergence speed to local optimum except for Agent 3
20
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Scenarios without stopping criterion
> MABO of the Eggholder function with a MAS of three agents
» MABO of the Eggholder function with a MAS of five agents
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Figure: Convergence speed, Method 2 Figure: Convergence speed, Method 2

» Observation:

— Faster convergence speed to the global optimum when the
MAS team size increases 21
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» RQ2: What impact would cost-aware stopping criteria have
on the search behavior of the MAS?

Cost-aware stopping criterion

U=G-KxC, (3)

where G = YK _ (a * PG + 8 % IG), IG is Information Gain, PG is
Performance Gain, K is the iteration number, C is the cost for
each search.

Scenarios with cost-aware stopping criterion

» MABO of the Cosines function with a MAS of three agents;
> MABO of the Eggholder function with a MAS of three agents.

22



» MABO of the Cosines function with a MAS of three agents

Best f(x)

Convergence speed: 13

0 5 10 1315
Step

Figure:

Convergence speed without stopping criterion

Best f(x)

—— Agentl
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—— Agent3

Convergence speed: 11
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100 11125 150

Figure: Convergence speed with cost-aware stopping

» Observation: Agent stopping early does not have a great
impact on the convergence in a simple objective function.
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Experimental results

Scenarios with cost-aware stopping criterion

> MABO of the Eggholder function with a MAS of three agents

—— Agent 1

—— Agent1
~ Agem2 200 < Agemt2
—— Agent3 —— Agent3
—400{ 400
X x
= =
z | E ~600
@ -]
Convergenct speed: 27 Convergence speed: 80
300/ 800
~1000[ ' oo T TTTTTI IR
0 10 0 27 30 “ 50 0 20 @ 50
Step

40
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Figure: Convergence speed without stopping criterion

Figure: Convergence speed with cost-aware stopping
criterion

» Observation: Agent stopping early could influences the
convergence in a complex objective function.
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!

For a design team, communication mechanisms and incentive
structures for solution search shall be designed and tailored
according to the complexity of the problem to be solved.

&)

Figure: Simple design
Figure: Complex design 26
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‘ Search cost Bayesian Reinforcement
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> Allocate appropriate amount of initial funds or budget to take
care of the risk-averse attitude of human designers and
enhance team resilience.

» The impact of MAS team size on the cost-setting strategy.
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Future work

Human design team Multi-agent system

Human Al

Human-Al teaming

Risk-preference Cost-aware

Local-global
Communication

Communication
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