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“...whoever wishes to
pursue the science
of medicine must first
investigate the seasons
of the year and what
occurs in them.”

Hippocrates, 4th Century B.C.
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Pandemics of the modern world
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Water-related diseases

Cases per year Deaths per year
Amoebiasis 48,000,000 110,000
Arsenic 28-35m exposed to drinking

water with elevated levels
Diarrhoeal disease, 1.5 billion 1,800,000

Including cholera

Dracunuliasis (guinea worm) > 5000 -

Fluorosis 26 million (China) -
Giardiasis 500,000 Low
Hepatitis A 1,500,00 -
Intestinal helminths 133,000,000 9400
Malaria 396,000,000 1,300,000
Schistosomiasis 160,000,000 > 10,000
Trachoma 500,000,000 -

Typhoid 500,000 25,000



Cholera: A Global Disease

®  Acute water-related diarrheal disease
Seventh pandemic started in 1960s

®  Occurs in more than 50 countries affecting
approximately 7 million people

|

Bengal Delta is known as “native
homeland” of cholera outbreaks
®  Since cholera bacteria

®  exist naturally in aquatic habitats _ ity Sy 1)
evidence of new biotypes emerging, & Wl b s T
it is highly unlikely that cholera will ' g
be eradicated but clearly can be
controlled by provision of safe
drinking water.
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1965-1975 An early contribution of marine microbiology to
human health: Determination of the Vibrio cholerae life cycle

| ViBRriO CHOLERAE ~ COPEPOD ANNUAL
CYCLE IN THE ENVIRONMEN
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Vibrio and their natural environment
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Brumfield et al. 2021, Env Micro

10



" MODEL FOR THE TRANSMISSION OF VIBRIO
CHOLERAE FROM THE ENVIRONMENT TO HUMANS
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Bangladesh Model of Cholera source
and Transmissio

G. Constantin de Magny
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% of drug resistant isolates <
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Drug resistance profile of V. cholerae O1 from
environmental sources (Mathbaria 2010-2014)
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Rashed et al. 2017, Front Microbiol
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Lobitz et al., 2000, PNAS Vol. 97, No. 4 pp. 1438-1443

Six-month SST lead: R2=0.72
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Epidemic Cholera are .
Sporadic deadly outbreak seasonality
Usually occurs inland after = = '
disasters
Temperatures may increase growth Chattak

of bacteria in aquatic bodies. ® I
Brahmaputra
G

Mixed-mode Cholera

e Usually two seasonal peaks

e One peak related to seawater
intrusion; Second peak associated
with widespread inundation Matlab

e Specificto Bengal Delta region ®

e ——

Endemic Cholera

e Cholera persists throughoutyear Mathbaria
in coastal regions

. ,
e Seawater intrusion from coasts t t
to inland
RE- 2




HEI‘bEl‘t WerthEin‘l CO]lEge Of Engineering POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

DEPARTMENT OF ENVIRONMENTAL ENGINEERING SCIENCES

Epidemic Mode of Cholera

Normal or Low Normal or Low o Sporadic outbreak
Temperature Rainfall o Usually occurs following floods or
inundation of large landscapes

|
| Warm t t i
@ /:6:. I ‘\ % L arm empera ures may INCrease

- growth of bacteria in aquatic bodies.

NRT-GPM
NOAA-NCEP

MeRra2 | Temperature Rainfall i
Met Office

........... Accumulated rainfall above threshold

%

Cholera Risk ngh Cholera Water
Risk < o

Insecurity UNICEE
Q : ¥ NASA-SEDAC
. L g Challenge
Low Cholera Water .
e S * Disease (prevalence) data

+ Time invariant algorithm
Warm temperature= above climatological averagetemperature . searCh for self_adaptive algorithm

Heavy rainfall= above climatological average precipitation
Water insecurity=lack of access to water and sanitation access
High cholera risk=probability of cholera greater than 50%

Jutla et al., 2017, ASCE JWRPM 17



2015-2019 Prototype of cholera 5 : -'2015'
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June Cholera Risk Map
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Shotgun whole (meta)genome sequencing

Biological specimen Community DNA DNA Sequencing
§ §§ e

GenBook Biomarker Matching CosmosID Database Raw Sequence Reads
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Identified All Microbes

Microbial Identification &
Pathogen Characterization
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Unlocking The Microbiome



What WGS provides

WGS

N
Species ID
N

Strain subtyping
N

Genomic variants
Know the

enemy

)

A/

Phenotypes (antibiogram)

¥

Treatment decision

(acquired genes, mutations

Understand
to respond

properly

L 4
MALDI-TOF

Antibiotic susceptibility tests
(MIC, 12D, ...)

Non-WGS subtyping
(MLST, T-RFLP, ...)

Non-WGS AMR genotyping
(PCR, ...)

Identification of
| AMR determinants

\ Epidemiological tracking

Surveillance database




Microbiome Analysis of Acute

Diarrheal
Patients Compared with Healthy
Individuals

pre-publication results

/) COSMOSD



Study Cohort

@ 2% Surveillance (every 50t patient) at the National Institute of Cholera and
Enteric Diseases (NICED), Calcutta, India

Study Phases  10t2I # of Ao Unknown Healthy
! Samples Etiology Etiology Control

PHASE | 9 9 0

PHASE II 28 0 18 10

PHASE Il 37 17 10 10

Enteric Pathogens monitored

! ! |

V. cholerae O1 and O139

V. cholerae Non O1 and Non 0139
V. parahaemolyticus

V. fluvialis

Rotavirus . B
Giardia famblia

Adenovirus

Cryptosporidium
Aeromonas spp. parvum
Morovirus Gl
Campylobacterjejuni Norovirus GlI
Campylobactercolf Entamoeba
histolytica
Sapovirus
Shigella dysenteriae
S. flexneri
S. sonnei

Blastocystis

Astrovirus hominis

S. boydii
Salmonella
EPEC
ETEC group (LT, ST, LT+ST)
EAEC
EIEC

/) CoSMosIDr

Unlocking The Microbiome



Microbial Community in Healthy vs Diarrheal Patients

N Known

E Disease

= Etiology
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Unknown
Disease Etiology

v-Proteobacteria
Firmicutes

Bacteroidetes

Fusabacteris_¢ m.
Spirachactaies nzx.
Actinobacteria 0.7% .

Aikermansia_mucinighila 0% .
cansawe avion 0% [
T |

Synergistes 0% .
Bacteroidales 0% .

lunassignes Bacterisl 0.7% D
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Antimicrobial resistance prevalent in Indian population
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o Genes which match at>50%coverage
o HMP samples had no genes present which matched at this level of coverage
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Vibrio Prediction Hub

GeoHealth & Hydrology Lab at the University of Florida

Stay updated by joining our community

5 Unfollow

A decision-making initiative for protecting human health and enhancing the resilience of coastal communities
under current and changing environments



https://vibrio-prediction-ufl.hub.arcgis.com/
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How does coronavirus kill?
Clinicians trace a ferocious
rampage through the body, from
brain to toes

Meredith Wadman, Jennifer Couzin-Frankel, Jocelyn
Kaiser, Catherine Matacic. Science, Apr. 17,2020, 6:45 PM

https://www.sciencemagq.org/news/2020/04/how-does-
coronavirus-kill-clinicians-trace-ferocious-rampage-
through-body-brain-toes

—

Tlungs

A £10%5 saction shows

immune cells crowding an
inflamed alveolus, whase
walls break down during
attack by the virus,
diminishing oxygen uptake.
Patients cough, fevers rise,
and it takes mare and more
effort 10 breathe.

2 Liver

Up to half of hospitalized
patients have enzyme levels
that signal a struggling liver
AN immune system in
overdrive and drugs given
10 fight the virus may

be causing the damage,

3 Kidneys

Kidney damage is common
In severe cases and makes
death more likely, The virus
may attack the kidneys
directly, or kidney failurs
may be part of whale-body
events like plummeting
Blood pressure.

4 Intestines

Patient reports and biopsy data
sugqest the virus can infect the
lower gastrointestinal tract, which
5 rich in ACE2 receptors. Some 20%
or more of patients have diarrhea.

Windpipe

-19 polymicrobial and systemic?

5 Brain

Some COVID-19 patients

have strokes, seizures,

mental confusion, and brain
inflammation. Doctors are
trying to understand which

are directly caused by the vinus.

6 Eyes

Conjunctivitis, inflammation
of the membrane that lines
the front of the eye and inner
eyelid, is more commen in
the sickest patients.

T Nose

Some patients lose their sense
of smell. Scientists speculate
that the virus may mave

up the nose’s nerve endings
and damage cells,

8 Heart and blood vessels
The virus (green) enters cells,
likely including those lining blood
wessels, by binding to ACE2
receplors on the cell surface,
Infection can also promote blood
clats, heart attacks, and cardias
inflammation.
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Identification of Bacteria and Viruses
Present m Respiratory Samples m which

SARS-CoV-2 has been Detected




SARS Cov-2 viral RNA has been detected 1n
48.1% of stool samples

Stool viral RNA positivity rate

Prevalence Welgh'l: 'i'l'mght
Study Events Total (%) 95%-Cl (fixed) (random)
Xiao F 39 73 e 53.42 [41.37; 65.20] 55.8%  45.2%
Zhang W 4 15 ——0F 2667 [7.79; 5510] 9.0%  10.9%
Zhang J 5 14 - 3571 [12.76; 64.86) 990%  11.9%
Wang W 5 13 ——— 3846 [13.86; 6B.42] 94%  11.4%
Young BE 4 ] - 50.00 [15.70; 84.30] 6.1% T.7%
Kim JY 02 - 0.00 [0.00; 84.19] 1.3% 1.7%
Yang Z i 3 : « 100,00 [29.24; 100.00] 1.3% 1.6%
Cheng SC 0 1 : 000 [000; 9750 12%  15%
Holshue 1 1 ! 100.00 [2.50;100.00) 1.2% 1.5%
Cai J 5 6 3 B3.33 [35.88; 99.58] 26% 3.3%
Zeng L 1 1 T 100,00 [2.50;100.00] 1.2% 1.5%
Zhang Y 1 1 E « 100,00 [2.50;100.00] 1.2% 1.5%
Fixed effect model 138 = 48.88 [40.41; 57.41] 100.0% .
Random effects model _ 48.06 [38.33; 57.94] - 100.0%

o
=
=

Helerogeneity: ¥ = 7%, +* = 0.0381, p = 0.18
0 20 40 60 80 100

Gastroenterology

Cheung et al., (2020). Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal
Samples from the Hong Kong Cohort and Systematic Review and Meta-analysis. Gastroenterology. Pre-Proof



Positive Stool Samples Detected After

Resprratory Sample Tested Negative During
Recovery
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Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. 2020 The lancet Gastroenterology — hepatology. Volume 5, Issue 5,434
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COVID-19 tracking in wastewater in
Maryland, USA, 2020-2022

Population per 5q, mile
1..10

e
sl 10..25
25...50
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250...500
500...1000

e 1000...2500
g 2500...5000
il 5000




Wastewater surveillance

1 * Viral Excretion

v

Residential

E protein

Industry

—

1 Septic Tanks

Hospitals

Wastewater Treatment Plant

COVID-19 |

RT-gPCR and Metagenomic Sequencing
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Results from Frederick, Maryland sites, 2020

Ballenger McKinney WWTP viral RNA target signal by date
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Case Study: Mount St. Mary’s University

Get ona yoar for §24 Signin &

The Wastinglon Jost

» Twice weekly sampling of dormitory

0 Maryland Politics
effluent . Flushing out the coronavirus: Universities, cities and states
* Covid spike triggered testing of " are testing wastewater for the virus
individual students ’

« 221 students tested
* 10 positive
* 9 asymptomatic
* “It could have become quite a

spreading event,” said Donna Klinger,
a spokeswoman for the university

» Coronavirus positive students isolated
and wastewater tests done twice
weekly

[
COSMOS' D® 20030 Century Blvd, Germantown, Maryland 20874

Unlocking The Microbiome 34



Herbert Wertheim College of Engineering

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

SARS-CoV-2 (COVID-19)

Development of prediction algorithm

In-house cholera prediction algorithm was modified for COVID-19
Algorithm is based on geographically weighted raster
probabilistic dose-response assimilation technique

(Email ajutla@ufl.edu and moiz.usmani@ufl.edu for details)

Socio-demographical Earth
indicators Observations
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Wastewater
Analysis



https://covid-ufl.hub.arcgis.com/apps/covid-19-risk-map/explore

Clustering of disease prevalence vs ambient air temperature
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Usmani et al. 2022, AM J Trop Med Hyg



Hypothesis for environmental COVID-19 risk prediction

il

l COVID-19 Risk

[l

8]
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temperature
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/
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@

Dry air

l Aerosolization of
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Transmission |

@ SARS-CoV-2
i
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N
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Transmission
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> 000
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Usmani et al. 2022, AM J Trop Med Hyg




Environmental
COVID-19 risk
prediction

Usmani, Brumfield,
Jutla, & Colwell; in preparation
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[ 1001 - 5000
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Expression of AMR in wastewater (RNA-seq)

100-

75-
9
N
3
p: AMR Class
e Tetracycline
8 50- Phenicol
6 Macrolide
g Beta-lactamases
(=2}
k)

25-

Brumfield et al. 2022, mBio Vol. 13, No. 4, Microbiome Analysis for Wastewater Surveillance during COVID-19
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Distribution of antibiotic resistance genes (ARGs) and
stepwise reduction of ARG’s in MF and RO-biofilms

N=141
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Detection of SARS-CoV-2 in wastewater
and predicted risk
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Abundance

Microbiome profiles of wastewater
DNA metagenomics
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Prediction of coronavirus risk

COVID-19 Cases Map, April 24- May 14 | 2020 A

i,

[ s001 - 42630

Left panel: Prediction made on April 24t 2020 and valid until May 14th, 2020.
Right panel: Actual number of COVID19 cases during those three weeks: a
heuristic prediction model developed in GeoHLab
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Detection of SARS-CoV-2 in wastewater
and predicted risk
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“When one tugs at a single thing in nature,
he (and she) find it hitched to the rest of the

universe.”
John Muir
(1838-1914)
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