

SERC DOCTORAL STUDENT FORUM 2024 | NOVEMBER 13, 2024

Impact of Technical Measure Omission

Casey Eaton

SERC RESEARCH REVIEW 2023 | NOVEMBER 13

Introduction: Casey Eaton

The University of Alabama in Huntsville Ph.D. Systems Engineering (May 2025, expected)

Dissertation Fellowship & Sponsor Alabama Space Grant Consortium Fellowship Awardee (2022 - 2025) NASA Systems Engineering Consortium (2020-2023)

Technical Measures

A set of measures that assesses a system (e.g. mass, distance, cost) [1]

- Basis for decision making [2-6]
- Provide justification for decisions made
- Different types depending purpose & organizations (MOEs, TPMs, etc.)

Idealized Use of Technical Measures

Selection of Technical Measures in Large-Scale Complex Engineered Systems Design

Casey Eaton¹, Bryan Mesmer¹, Susan Ferreira²

¹ The University of Alabama in Huntsville ² The University of Texas Arlington

NASA Grant Number: NNM11AA01A 14.1 NASA Cooperative Agreement: 80NSSC20M0044

SERC RESEARCH REVIEW 2023 | NOVEMBER 13

Research Gap: Sufficient guidance?

What we know about technical measures & selection guidance:

- Selected through heuristics and experience as acknowledged by [9-12]
- Varied guidance available for practitioners [13]
- No synthesis assessing current guidance [13]

RQ: Is selection guidance sufficient for practitioners to select a technical measure set that results in the desired system?

Research Methods: Systematic Literature Review[14]

Organizational and Research Guidance

Research Methods: Inductive Content Analysis [15-16]

Findings: Guidance Largely Consists of *Qualities* and *Examples*

89 Sources; 2,535 Guidance Statements

Findings: *Qualities* guidance may be contradicting or nonrestricting.

Explains <u>which qualities</u> but not <u>how</u> to achieve them.

Not specified when guidance applies.

Findings: Multiple origins identified in *Genesis* guidance

Little guidance on <u>how</u> to derive measures. No guidance on deconfliction.

Findings: Derivation process is inconsistent

Dependency on Other Items

Dependent on Other Items Independent of Other Items

Findings: *Quantity* guidance is inconsistent but <u>does</u> <u>not explain under what</u> <u>conditions it is</u> <u>applicable.</u>

What does Focus 1 research tell us?

Selection guidance contradicts and lacks underlying evidence & specificity on when guidance applies.

Current selection guidance may not be sufficient.

We cannot assume technical measure sets are "complete" or "correct".

Idealized Use of Technical Measures

Impact of Technical Measure Omission in System Concept Selection

Casey Eaton¹, Bryan Mesmer¹,

¹ The University of Alabama in Huntsville

NASA Grant Number: NNM11AA01A 14.1 NASA Cooperative Agreement: 80NSSC20M0044

SERCRESEARCH REVIEW 2023 | NOVEMBER 13

Focus 2

Research Gap: Impacts of <u>Sets</u> of Technical Measures

Theoretical impacts when using individual measures are easier to understand.

e.g. switch from maximizing payload capacity to minimizing mass

Real world impacts of a measure in a set on a decision may be less clear.

- e.g. adding or removing a new measure to/from a set of 20 measures.
- Cannot rely on having a "complete" set from guidance

RQ: If you are missing technical measures, does it actually matter in real-world situations?

Research Methods: Model Omission Impacts in Concept Selection

Research Methods: Two Common Frameworks [17-19]

Requirements-based: Constraint Framework

Optimization-based: Objective Function Framework

Methodology Overview

- 0. Select Case Study System
- 1. Extract Technical Measure Set for System
- 2. Formalize Thresholds and Goals
- 3. Identify Sample Systems
- 4. Apply Frameworks with TM Sets
- 5. Assess Omission Impacts

Research Methods: Modeling Impact of Measure Omissions

1. Extract Technical Measure Set for HLS

÷.	Rotes	тры	THE TOP	Urita	Connected to	· Appendix in Eq. ···	Value (current) ~	Threshold (runned)	*	Geal (current)	
	Comm	3.3A	Communication Link Margin - Downlink (for each band)		n/a	\$2(4)		3.00		6.00	-
3	Comm	3.29A	Lunar Surface Communication Range (UHP)	ken	n/+	£3(x)		2.00		40.00	
4	Duration	3.14A	Duration Between First Launch and LDCR Completion - Maximum	days	n/a	8404		30.00		Note	
	Duration	3.51	Uncrewed Lunar Orbit Operations Duration	days	n/a	£1(x)		90.00		None	
	Duration	3.46	Surface Mission Duration - Maximum	days	3.28, 3.45	g5(x)		6.50		None	
	Duration	3.268	Lunar Darkness Survival Duration (total duration)	hours	3.45, 3.46	g7(x)		150.00		193.00	
	Dynation	3.45	Surface EVA Duration per EVA	hn	3.28, 3.46	gR(x)		9.00		None	
	System	3.56	Vehicle Reliability		n/a	£9(x)		0.975		Note	
18	System	3.34	MMCO Probability of No Penetration		n/a	g10(s)		0.99904		Note	
	Landing	3.34	Landing Accuracy		n/a	g13(s)		+50		Note	
- 0	Landing	3.27	Leveling Capability	depres	3.48, 3.44	£12(x)		2.00		5.00	
0	Landing	3.44	Slope Tolerance Maximum (landing)	degrees	3.48, 3.27	g13(s)		30.00		None	
14	Landing	3.48	Surface Operations Vertical Orientation (landing after leveling)	degrees	3.27, 3.44	g14(s)		8.00		5.00	
. 18	Prop	*3	Specific Impulse (for each module if applicable)		42	#15(s)		\$00.00		380.00	

2. Formalize Thresholds and Goals

3. Identify Sample Systems

			- 1	System Attempts	**		Prevint.8	# Lihovised Smiler Eyelene								_
Sea	Such Waarune	UNIX	State Music (State Origin)	Townell, Therefore	Dentes Alfrica HLS	After Excentions	(M-F)Apple ()	Viting 1 Just-count	Patienter	Mars Puter Lander	Pharte	Mars Science Laboratory EDL (900-0168)	Marris Lage Derived	NASA Mujfeka	People Lander	Mars 2020 EDL8 (ren-crise)
Conve	Communication Carl Margin - Dearth & (5)	. 48	3			(1) (1) (1) (1)	P.O. 100			, ,	(1 1		
Duration	Universit Lonar Orbit Operations Duration	days	.49.75		49.79		6	6.7	49.75		(i	10.71	49.7	4.75	10.7	
Quantum	Sarlace Mission Duration - Maximum	stays		(i 119				1 12.2	122	-122	- 423	. 90	123	12.2		
Dynathos	Junter Dertmess Survival Duration (total du	hours	10	3816	3916	7440	361	3876		3816	361	305	1 2010		3816	
Relability	Vehicle Reliability		0.00		0.00	0.00	4.00	1.00		0.00		1.94	0.00	0.00	2.0	6 88
Landing	Landing Accuracy	in the second se	6.1		1		2.4		6 200	200				0.02	110	r 1
Laning	Size Tatalance Maxmun	degram	12.38803338	12 38800000		13 10033310		12,3300,03.0	12 10310333	12.30388870	@ 3001111		12 3660000	12 3800000	12.33888030	Q.MINE
Proc	Specific Impulse (for each module if applic)		-411	1 1.325	300		30	198	200		34		202	1 301	100	
Pros	Thrust of Main Propulsion System	N (NO) .		5,315,88	31,000	16,600	6,900.00	9006.758	2004 10	1064	381	3001	210	24060	1.30	249
PropMass	TM Refu	14/14	0.00	2.00	0.36	6.41	1.00	12.11	24.79	6. (347	5.0	1.00	- 9.6	- 44	3.0	6 (8)
Max	PMI		0.434	0.807	0.305	8.942	0.002	0.040	0.240	0.187	0.478	6.96	5.39	0.725	0.158	1 10
Mexi	Unable Propellant Marci at Earth Lauruit (N	44	9798	1,000,000	4000	24000			214	1044	38			290		
Man	NUS Cargo Mass Capability - Janto to Miled	łą.	14 166 51	490.000	12.00	94,900	REAL		94	1 10	0 89	240	940	400	42	45

Research Methods: Modeling Impact of Measure Omissions

NASA HLS Expected Model Selection [20]

Constraint Framework: Starship & Blue Moon Acceptable. ALPACA Unacceptable.

Objective Function Framework: Starship > Blue Moon > ALPACA

Constraint Framework Overview

Constraint satisfaction problem formed from thresholds.

Example Constraints

Landing Accuracy: $g_{11}(x) = LA - 50 \le 0 \ km$ Slope Tolerance $g_{13}(x) = -ST + 10 \le 0 \ degrees$ $0 \le LA \ km$ $0 \le ST \le 180 \ degrees$ Strict (1) and (2) Penalty Interpretation

$$P = m_1 \cdot m_2 \cdot \dots \cdot m_n$$
(1)
min P(\bar{m}) = $\sum_{k=1}^{l} (h_k(\bar{m}))^2 + \sum_{j=1}^{p} max(0, g_j(\bar{m}))^2$ (2)

Complete Measure Set Violations

Propulsion	Communication Landing								
Duration									
Reliability	Mass								
Model Selection(s)									
Actual Award									

		Constraint														
Svstem	g1(x)	g2(x)	g3(x)	g4(x)	g5(x)	g6(x)	g7(x)	g14(x)	g8(x)	g9(x)	g10(x)	g11(x)	g12(x)	g13(x)	Violated	
	CLM	LA	ST	СМС	UPM	DM	LMA	CMC, UPM, LMA	ULD	SMD	KDD	VR	IS P	TP	Constraints	
Altair	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfie d	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	0	
ALPACA	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Violated	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	1	
Blue Moon	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Violated	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	1	
Mars 2020 EDLS	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Violated	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	1	
LM-1	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Violated	Violated	Satisfied	Satisfied	Satisfied	Satisfied	2	
Morpheus	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Violated	Satisfied	Satisfied	Violated	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	2	
MSL EDL	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Violated	Satisfied	Satisfied	Satisfied	Violated	Violated	3	
Mighty Eagle	Satisfied	Satisfied	Satisfied	Violated	Satisfied	Violated	Satisfied	Satisfied	Violated	Satisfied	Satisfied	Satisfied	Satisfied	Violated	4	
Mars Polar Lander	Satisfied	Violated	Satisfied	Viola ted	Satisfied	Violated	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Violated	Violated	5	
Pathfinder	Satisfied	Violated	Satisfied	Violated	Satisfied	Violated	Satisfied	Satisfied	Violated	Satisfied	Satisfied	Satisfied	Violated	Satisfied	5	
Phoenix	Satisfied	Violated	Satisfied	Violated	Satisfied	Violated	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	Violated	Violated	5	
Starship	Satisfied	Satisfied	Satisfied	Satisfied	Violated	Satisfied	Violated	Violated	Violated	Satisfied	Satisfied	Violated	Satisfied	Satisfied	5	
Insight Lander	Satisfied	Violated	Satisfied	Violated	Satisfied	Violated	Satisfied	Satisfied	Violated	Satisfied	Satisfied	Satisfied	Violated	Violated	6	
Viking 1	Satisfied	Violated	Satisfie d	Viola ted	Satisfied	Violated	Satisfie d	Violated	Violated	Satisfie d	Satisfie d	Satisfied	Violated	Satisfied	6	

Omission Impacts in a Strict Constraint Framework

	Propulsion	Communication							
	Duration	Landing							
	Reliability	Mass							
Model Selection(s)									
\square	Actual Award								

Altair al 0 0 0 0 0 0 0 0 0 0 0 0 ALPACA 0 Blue Moor Mars 2020 EDLS LM-1 Morpheus MSL EDU Mighty Eagle Mars Polar Lande Pathfinder Phoenix Starship 5 5 5 Insight Lande 6 5 6 5 6 5 Vikino 1 6 6 80 6 4 4 6 80 4 6 0 0 80 4 6 80 6 -4 6 Communication Surface Mission Lunar Darkness Uncrewed Lunar Vehicle No Omissions Link Margin Slope Tolerance Landing Accuracy Cargo Mass Dry Mass Launch Mass Duration Survival Orbit Reliability **Propellant Mass** Specific Impulse Thrust

Number of Violated Constraints

Measure Omitted

Omission Impacts in a Penalty Constraint Framework Example

Count Shows Penalty for Violated Constraints (\$)

Measure Omitted

Objective Function Framework Overview

V = P + 300 * M + 150 * CLM + 20 * ULD + 120 * SMD + 0.5 * LDD+ 40000 * VR - 6 * LA 35 * ST + 400 * TM + 2500 * PMF + 0.006 * CMC

SYSTEMS ENGINEERING RESEARCH CENTER

Omitting High-Level Measures Changes Selection

Model Selection

Actual Awards

Omitting Measure Categories Changes Selection

Model Selection

Omitting Individual Measures Changes Selection

Model Selection vs Actual Awards: Technical Measure Challenges in the Real World

1. Why did two systems that violated constraints win the actual awards?

- Not using a strict constraint framework.
 - Less control over decision with transparent method.
 - Expert judgement may be able to reflect preferences better than measurement-based frameworks.
- Discrepancies in publically available data.

2. Why did actual award bids not maintain ranking consistency?

- Different weighting or formation than used in our objective function.
 - e.g. high prioritization of cargo mass over reliability
- Unstated technical measures.
 - Non-technical aspects that influence decision

Next Steps for Focus 2

1. Transition to simulating systems

- Tests bounds of scenarios

2. Combine frameworks

3. Add uncertainty to measures

- Thresholds (constraint framework)
- Weighting (objective function framework)

What does Focus 2 research tell us?

Incomplete technical measure sets can theoretically impact design decisions.

Case study suggests impacts can occur in real world systems.

Impacts depend on framework; constraints appear more robust.

Why does this dissertation matter for the Systems Engineering community?

Focus 1: Observed lack of sufficient guidance

Focus 2: Practical impact potential for omissions

Systems Engineering frameworks should account for technical measure sets being imperfect AND develop better selection methods.

References

- [1] NASA Systems Engineering Handbook. (2019, September 16). [Text]. NASA. http://www.nasa.gov/seh/64-technical-risk-management
- [2] Hybertson, D., Hailegiorghis, M., Griesi, K., Soeder, B., & Rouse, W. (2018). Evidence-based systems engineering. Systems Engineering, 21(3), 243–258. https://doi.org/10.1002/sys.21427
- [3] Orlowski, C., Blessner, P., Blackburn, T., & Olson, B. (2015). A Framework for Implementing Systems Engineering Leading Indicators for Technical Reviews and Audits. 61, 293–300. Scopus. https://doi.org/10.1016/j.procs.2015.09.218
- [4] Roedler, G. J., & Jones, C. (2005). Technical Measurement. A Collaborative Project of PSM, INCOSE, and Industry.
- [5] Staron, M. (2012). Critical role of measures in decision processes: Managerial and technical measures in the context of large software development organizations. *Information and Software Technology*, *54*(8), 887–899.
- [6] Volkert, R., Stracener, J., & Yu, J. (2014). Incorporating a measure of uncertainty into systems of systems development performance measures. Systems Engineering, 17(3), 297–312. Scopus. https://doi.org/10.1002/sys.21270
- [7] Eaton, C., & Mesmer, B. (2022). Selection of Technical Measures: A Preliminary Comparison Among U.S. Government Agencies. AIAA SCITECH 2022 Forum. https://doi.org/10.2514/6.2022-0659
- [8] Expanded Guidance for NASA Systems Engineering. Volume 1: Systems Engineering Practices. (2016). NASA.
- [9] Eggstaff, J. W., Mazzuchi, T. A., & Sarkani, S. (2014). The development of progress plans using a performance-based expert judgment model to assess technical performance and risk. Systems Engineering, 17(4), 375–391. Scopus. https://doi.org/10.1002/sys.21273
- [10] Pinker, A., Samuel, A. H., & Batcher, R. (1995). On Measures of Effectiveness. Phalanx, 28(4), 8-12.
- [11] Rhodes, D. H., Valerdi, R., & Roedler, G. J. (2009). Systems engineering leading indicators for assessing program and technical effectiveness. Systems Engineering, 12(1), 21–35. https://doi.org/10.1002/sys.20105
- [12] Sillitto, H. G. (2004). An integrated set of technical measures to support earned value management and technical review. INCOSE International Symposium, 14(1), 1996–2010.
- [13] Eaton, C., Liverett, G., & Mesmer, B. (2022). A Preliminary Review of Guidance for Technical Measure Selection in Academic Literature. *Proceedings of the International Annual Conference of the American Society for Engineering Management.*, 1–8.
- [14] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906. doi:10.1016/j.ijsu.2021.105906
- [15] Stemler S. An overview of content analysis. Pract Assess Res Eval. 2000;7. doi:https://doi.org/10.7275/z6fm-2e34
- [16] Weber RP. Basic Content Analysis. Sage; 1990.
- [17] Collopy, P. D., & Hollingsworth, P. M. (2011). Value-Driven Design. Journal of Aircraft, 48(3). https://doi.org/10.2514/1.C000311
- [18] Hupman, A., Abbas, A., Tibor, E. B., Kannan, H., Bloebaum, C. L., & Mesmer, B. (2015, January 5). Calculating Value Gaps Induced by Independent Requirements, Deterministic Modeling, and Fixed Targets. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida. https://doi.org/10.2514/6.2015-1363

[19] Murugaiyan, S., Kannan, H., Mesmer, B., Abbas, A., & Bloebaum, C. (2016). A Comprehensive Study on Modeling Requirements into Value Formulation in a Satellite System Application.

[20] Office, U. S. G. A. (n.d.). Decision: Blue Origin Federation, LLC; Dynetics, Inc.-A Leidos Company | U.S. GAO. Retrieved July 25, 2024, from https://www.gao.gov/products/b-419783%2Cb-419783.2%2Cb-419783.3%2Cb-419783.4

Thank you!

Stay connected with SERC Online:

🔆 in D

Email the presenter: Casey Eaton

casey.eaton@uah.edu

This work was sponsored, in part, by:

- NASA's Exploration Systems Development Mission Directorate through the Space Launch System (SLS) Program Liquid Engines Project, Grant Number: 80MSFC22M0004
- NASA cooperative agreement 80NSSC20M0044 awarded to the Alabama/NASA Space Grant Consortium
- NASA Systems Engineering Consortium Grant Number: NNM11AA01A 14.1.

Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NASA.