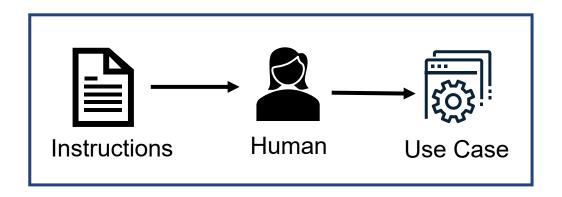
Systems Engineering Language Modeling Assistant (SELMA)

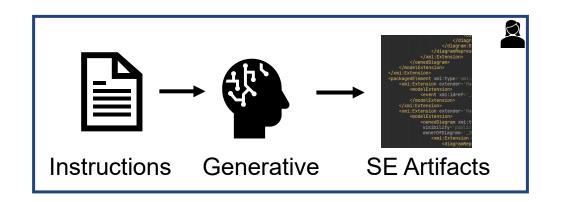
Jyotirmay Gadewadikar, Tomi Esho, Jeremy Marshall

MITRE | SOLVING PROBLEMS FOR A SAFER WORLD[®]

©2024 The MITRE Corporation. ALL RIGHTS RESERVED Approved for public release. Distribution unlimited 24-00764-5

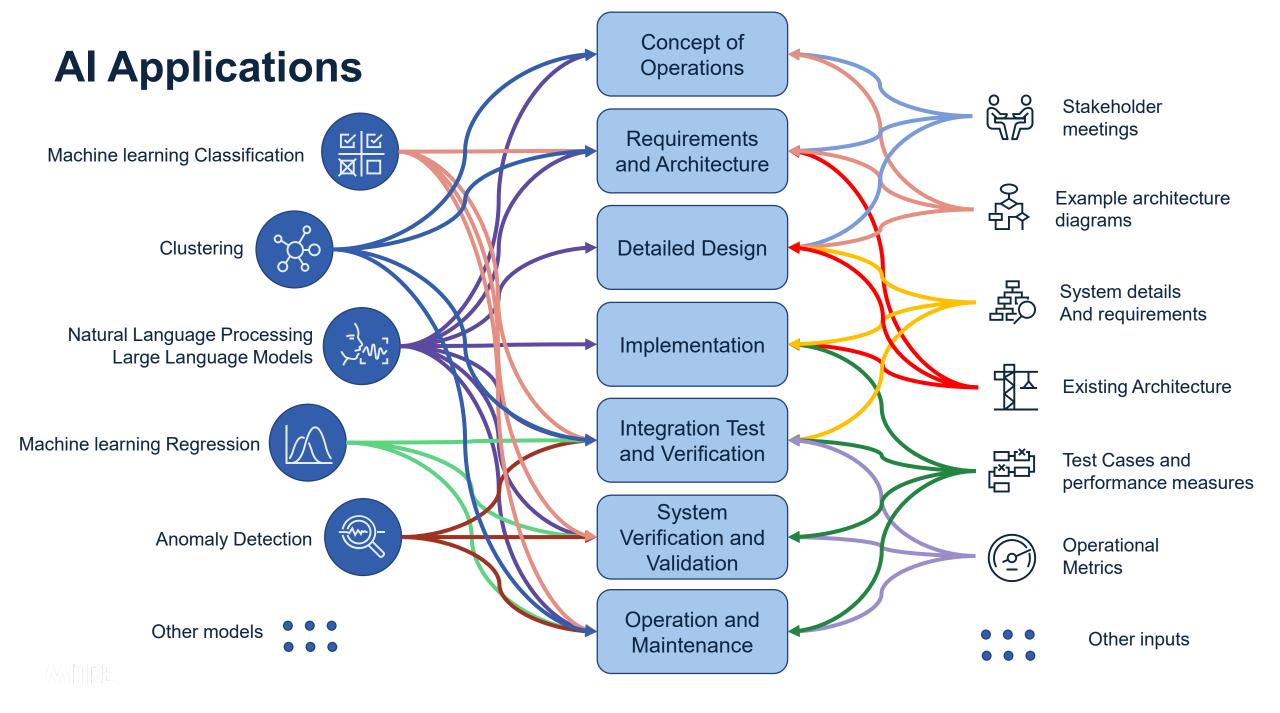
Motivation for Generative Systems Engineering


 Generative Systems Engineering uses natural language processing to support Systems Engineering and generate / refine requirements, architecture, code, testing approaches etc..

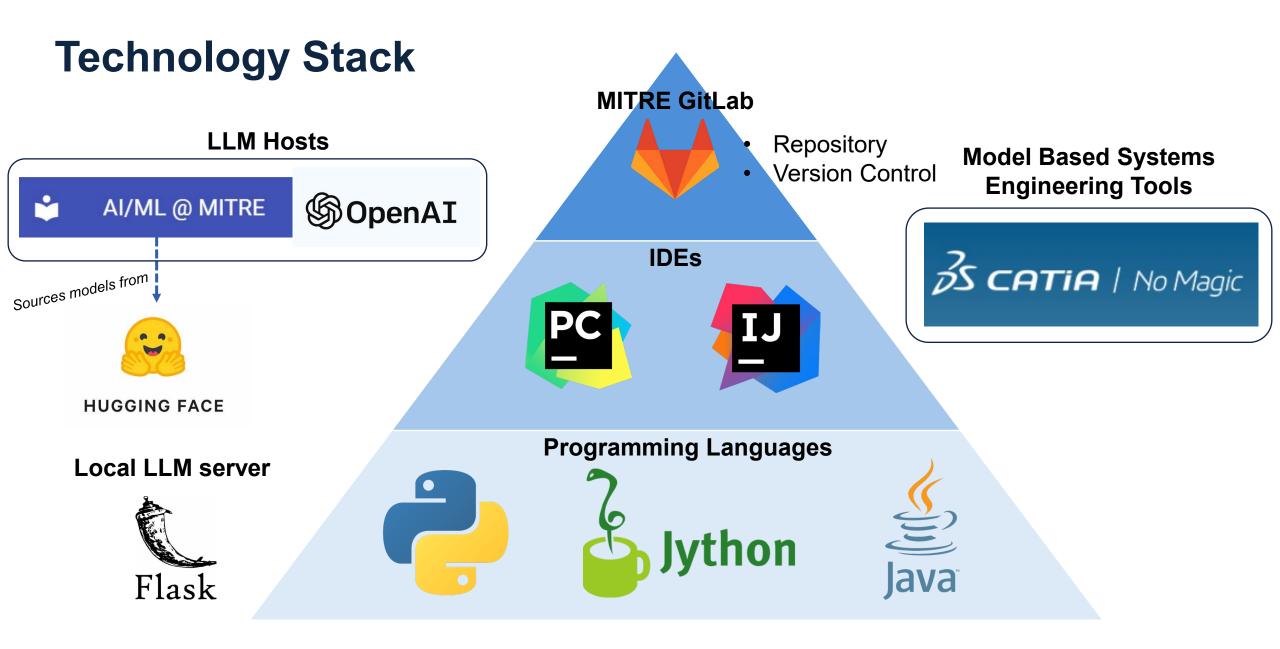

As-Is: Humans are creating artifacts which are used in the SE process, testing/using those, manual process of code/artifact generation \rightarrow putting that into a tool, testing it, supporting the underlying use case.

- Slow
- Manual
- Error prone
- Focused on coding

To-Be: Humans can use NLP to create artifacts and focusing on how to use SE to support the underlying use case.


- Fast
- Semi-automatic
- Reduced errors
- Focused on core mission

Al Opportunities in SE lifecycle


	-		
Lifecycle	Activities	Pain Points	Where AI can help
Concept of Operations	 Define system objectives and scope Identify stakeholders and their needs Develop operational scenarios Draft Concept of Operations document 	 Difficulty in gathering comprehensive stakeholder requirements Ambiguity and inconsistency in defining operational scenario Time-consuming document drafting and review process 	 Initial Data Analysis: AI can analyze stakeholder data and operational scenarios to identify and validate system objectives. Concept of Operations Generation: AI-powered tools can assist in drafting, reviewing, and ensuring consistency in the Concept of Operations document or identify and categorize initiatives and themes
Requirements and Architecture	 Elicit and document requirements Develop system architecture Perform trade-off analysis Validate requirements and architecture 	 Incomplete or conflicting requirements Difficulty in prioritizing requirements Time-consuming trade-off analysis 	 Requirements Elicitation and Generation: Al can generate and analyze stakeholder inputs and historical data to gather and prioritize requirements. Automated Consistency Checking: Al can identify inconsistencies, redundancies, and conflicts in requirements. Architecture Creation: Al algorithms can aid in generation and evaluation of multiple design alternatives and find the best system architecture.
Detailed Design	 Develop detailed design specifications Create design models and diagrams Review and validate designs Selection of tools and products 	 Complexity in translating high-level requirements into detailed designs Time-consuming design validation process Risk of design errors 	 Design Automation: Al-driven tools can automate the creation of schematics or code from high-level specifications. Design Validation: Al can validate designs against requirements and constraints, identifying potential issues early. Tool Selection: Al can assist in identifying a list of tools/products and vendors suited for the task
Implementation	 Develop and integrate system components Write and review code Perform unit testing 	 Manual coding errors Time-consuming code reviews Incomplete unit testing 	 Code Generation: AI can assist in code generation from models or specifications, reducing manual coding effort and errors. Unit Testing Support: AI-driven static and dynamic analysis tools can help identify bugs, security vulnerabilities, and performance bottlenecks.
Integration Test and Verification	 Integrate system components Develop and execute test cases Analyze test results 	 Integration issues due to component incompatibility Time-consuming test case development Difficulty in analyzing large volumes of test data 	 Automated Testing: AI can assist in the creation and execution of test cases, analyzing results, and identifying areas needing further testing. Fault Detection: Machine learning algorithms can detect anomalies and predict potential integration issues.
System Verification and Validation	 Verify system against requirements Validate system performance in real- world scenarios Document verification and validation results 	 Ensuring comprehensive verification and validation Difficulty in simulating real-world scenarios Time-consuming documentation process 	 Al-driven Verification and Validation: Al can assist in verifying and validating subsystems outputs by comparing it against requirements/architecture and design Simulation and Emulation: Al can enhance simulation tools to test the system under various conditions and scenarios.
Operation and Maintenance	 Monitor system performance Perform maintenance and updates Provide user support 	 Unplanned system downtime Difficulty in identifying performance bottlenecks Time-consuming user support © 2024 THE MITRE CORPORATION. ALL RIGHTS RESER 	 System Maintenance: AI can predict component failures, allowing for proactive system maintenance and upgrades. Performance Monitoring: AI can continuously monitor system performance, identifying inefficiencies and suggesting modifications. User Support: AI-driven chatbots and virtual assistants can provide real-time support to users.

SELMA – Overview


- SELMA leverages generative artificial intelligence to automate laborintensive and time-consuming MBSE workflows
- This text-to-model prototype functions as a text interaction-based tool, allowing users to provide natural language instructions which are then converted to SE artifacts
- The conversation format allows users to make iterative changes to the model, enhancing flexibility and efficiency

MITRE

Text-to-model process flow

Core Technical Components

Input & Preparation

Function List Setup

Provide/Prepare LLM with list of available functions to call, along with their definitions

Processing

API Interaction with LLM

API calls to LLMs (Llama3, Mixtral, GPT) with Python

Prompt Engineering

Apply prompt engineering techniques such as fewshot prompting to ensure consistent and correct responses

Context maintenance

Each action is appended to the conversation history to provide context for subsequent actions

Execution

Communication

JSON-formatted LLM responses from Python script are sent to Java via HTTP requests with Flask

Optimization

Token limitations

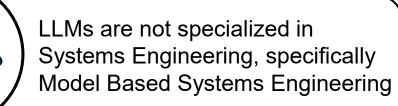
Sentence Transformers for semantic similarity ranking / information retrieval

Function Execution

Functions are parsed and executed within Java MBSE API scripts

Parallel function calling

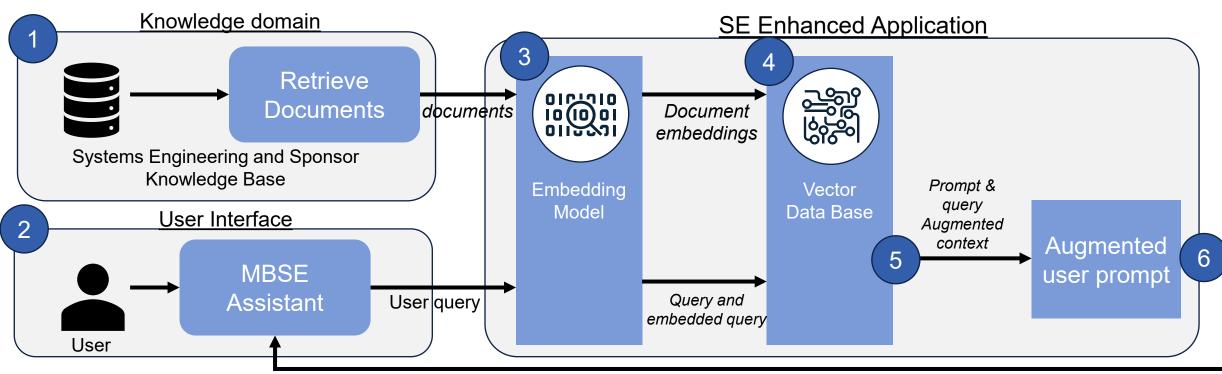
Process multiple functions in response to single user input


Video demonstration: Helicopter System

Conclusion

Challenges and Opportunities

Languages such as SysML alone are quite large and the model needs guide rails to ensure reliability



Developing a Generalized approach requires extensive planning and testing to identify the best trade off between the pros and cons of performance, token efficiency and scalability

Developing standards to evaluate LLMs in Systems Engineering Use Cases

Future State

LLM generated Response

- 1. System Engineering, Domain, and Approved Sponsor Information are stored to be used in vector database with dense embeddings.
- 2. User prompts MBSE Assistant with a request
- 3. Documents and user prompt embedded into vectors
- 4. Embedding of user prompt and compared against passage embeddings. Most similar passages are retrieved and augmented to the user prompt.
- 5. User prompt is augmented with contextual information and fed into LLM.
- 6. Response is parsed, and appropriate APIs are invoked to generate the artifact

MITRE

Jyotirmay Gadewadikar, Chief Scientist – AI Integration and Systems Engineering

jgadewadikar@mitre.org

https://www.linkedin.com/in/JyoMIT

