
Jyotirmay Gadewadikar, Tomi Esho, Jeremy Marshall

Systems Engineering Language
Modeling Assistant (SELMA)

©2024 The MITRE Corporation. ALL RIGHTS RESERVED
Approved for public release. Distribution unlimited 24-00764-5

2

Motivation for Generative Systems Engineering
 Generative Systems Engineering uses natural language processing to support Systems Engineering and

generate / refine requirements, architecture, code, testing approaches etc..

As-Is: Humans are creating artifacts which are used
in the SE process, testing/using those, manual
process of code/artifact generation putting that into
a tool, testing it, supporting the underlying use case.
• Slow
• Manual
• Error prone
• Focused on coding

To-Be: Humans can use NLP to create artifacts and
focusing on how to use SE to support the underlying
use case.
• Fast
• Semi-automatic
• Reduced errors
• Focused on core mission

Instructions Human Use Case SE ArtifactsGenerativeInstructions

3

AI Opportunities in SE lifecycle

© 2024 THE MITRE CORPORATION. ALL RIGHTS RESERVED. FOR INTERNAL USE ONLY.

Lifecycle Activities Pain Points Where AI can help
Concept of
Operations

- Define system objectives and scope
- Identify stakeholders and their needs
- Develop operational scenarios
- Draft Concept of Operations
document

- Difficulty in gathering comprehensive
stakeholder requirements
- Ambiguity and inconsistency in defining
operational scenario
- Time-consuming document drafting and review
process

- Initial Data Analysis: AI can analyze stakeholder data and operational scenarios to identify
and validate system objectives.
- Concept of Operations Generation: AI-powered tools can assist in drafting, reviewing, and
ensuring consistency in the Concept of Operations document or identify and categorize initiatives
and themes

Requirements
and Architecture

- Elicit and document requirements
- Develop system architecture
- Perform trade-off analysis
- Validate requirements and
architecture

- Incomplete or conflicting requirements
- Difficulty in prioritizing requirements
- Time-consuming trade-off analysis

- Requirements Elicitation and Generation: AI can generate and analyze stakeholder inputs
and historical data to gather and prioritize requirements.
- Automated Consistency Checking: AI can identify inconsistencies, redundancies, and
conflicts in requirements.
- Architecture Creation: AI algorithms can aid in generation and evaluation of multiple design
alternatives and find the best system architecture.

Detailed Design - Develop detailed design
specifications
- Create design models and diagrams
- Review and validate designs
- Selection of tools and products

- Complexity in translating high-level
requirements into detailed designs
- Time-consuming design validation process
- Risk of design errors

- Design Automation: AI-driven tools can automate the creation of schematics or code from
high-level specifications.
- Design Validation: AI can validate designs against requirements and constraints, identifying
potential issues early.
- Tool Selection: AI can assist in identifying a list of tools/products and vendors suited for the
task

Implementation - Develop and integrate system
components
- Write and review code
- Perform unit testing

- Manual coding errors
- Time-consuming code reviews
- Incomplete unit testing

- Code Generation: AI can assist in code generation from models or specifications, reducing
manual coding effort and errors.
- Unit Testing Support: AI-driven static and dynamic analysis tools can help identify bugs,
security vulnerabilities, and performance bottlenecks.

Integration Test
and Verification

- Integrate system components
- Develop and execute test cases
- Analyze test results

- Integration issues due to component
incompatibility
- Time-consuming test case development
- Difficulty in analyzing large volumes of test data

- Automated Testing: AI can assist in the creation and execution of test cases, analyzing
results, and identifying areas needing further testing.
- Fault Detection: Machine learning algorithms can detect anomalies and predict potential
integration issues.

System
Verification and
Validation

- Verify system against requirements
- Validate system performance in real-
world scenarios
- Document verification and validation
results

- Ensuring comprehensive verification and
validation
- Difficulty in simulating real-world scenarios
- Time-consuming documentation process

- AI-driven Verification and Validation: AI can assist in verifying and validating subsystems
outputs by comparing it against requirements/architecture and design
- Simulation and Emulation: AI can enhance simulation tools to test the system under various
conditions and scenarios.

Operation and
Maintenance

- Monitor system performance
- Perform maintenance and updates
- Provide user support

- Unplanned system downtime
- Difficulty in identifying performance bottlenecks
- Time-consuming user support

- System Maintenance: AI can predict component failures, allowing for proactive system
maintenance and upgrades.
- Performance Monitoring: AI can continuously monitor system performance, identifying
inefficiencies and suggesting modifications.
- User Support: AI-driven chatbots and virtual assistants can provide real-time support to users.

Stakeholder
meetings

Example architecture
diagrams

System details
And requirements

Operational
Metrics

Test Cases and
performance measures

Existing Architecture

Concept of
Operations

Requirements
and Architecture

Detailed Design

Implementation

Integration Test
and Verification

System
Verification and

Validation

Operation and
Maintenance

Natural Language Processing
Large Language Models

Anomaly Detection

Machine learning Classification

Machine learning Regression

Clustering

Other models Other inputs

AI Applications

5

SELMA – Overview

 SELMA leverages generative artificial intelligence to automate labor-
intensive and time-consuming MBSE workflows

 This text-to-model prototype functions as a text interaction-based tool,
allowing users to provide natural language instructions which are then
converted to SE artifacts

 The conversation format allows users to make iterative changes to the
model, enhancing flexibility and efficiency

6

Technology Stack

IDEs

• Repository
• Version Control

MITRE GitLab
LLM Hosts Model Based Systems

Engineering Tools

Programming Languages
Local LLM server

7

Text-to-model process flow

Text request
through MBSE
graphic user

interface

LLM identifies
the need to call

one or more
functions

LLM returns
function

names and
arguments

Function names and
arguments are used to create

models programmatically
through MBSE tool APIs

API call to
LLM to
process
request

Model is shown in the MBSE tool and inspected by the Systems Engineer, who
can make additional requests or ask for modifications

I am looking to
create a block

definition diagram
which displays the

blocks of a
Helicopter System …

MBSE Tool
Graphic User

Interface
initiated

Hello, how can I
help you today?

Now we want to add
the sub-systems to

the model, these are
sub-systems of the
Helicopter element.
These sub-systems

are as follows:
“Powertrain”…

I have
successfully
created….

MBSE assistant
response

First
response

Updated
model

Functions such as
create, modify,
delete…

8

Core Technical Components

API Interaction with LLM

Function List Setup

Function ExecutionCommunication

Context maintenance

Token limitations
Sentence Transformers for semantic similarity

ranking / information retrieval

Each action is appended to the conversation
history to provide context for subsequent actions

Input & Preparation

Processing

Execution

Prompt Engineering

Optimization

JSON-formatted LLM responses from Python
script are sent to Java via HTTP requests with

Flask

API calls to LLMs (Llama3, Mixtral, GPT) with
Python

Functions are parsed and executed within Java
MBSE API scripts

Parallel function calling
Process multiple functions in response to

single user input

Provide/Prepare LLM with list of available
functions to call, along with their definitions

Apply prompt engineering techniques such as few-
shot prompting to ensure consistent and correct

responses

9

Video demonstration: Helicopter System

10

Conclusion

11

Challenges and Opportunities

LLMs are not specialized in
Systems Engineering, specifically
Model Based Systems Engineering

Languages such as SysML alone are
quite large and the model needs guide
rails to ensure reliability

Developing a Generalized approach requires
extensive planning and testing to identify the
best trade off between the pros and cons of
performance, token efficiency and scalability

Developing standards to evaluate
LLMs in Systems Engineering Use
Cases

12

Future State

Retrieve
Documents

MBSE
Assistant

Embedding
Model

Vector
Data Base

Augmented
user prompt

documents Document
embeddings

User query Query and
embedded query

Prompt &
query

Augmented
context

User

Systems Engineering and Sponsor
Knowledge Base

LLM generated Response

Knowledge domain

User Interface

SE Enhanced Application

1. System Engineering, Domain, and Approved Sponsor Information are stored to be used in vector database with dense embeddings.
2. User prompts MBSE Assistant with a request
3. Documents and user prompt embedded into vectors
4. Embedding of user prompt and compared against passage embeddings. Most similar passages are retrieved and augmented to the user prompt.
5. User prompt is augmented with contextual information and fed into LLM.
6. Response is parsed, and appropriate APIs are invoked to generate the artifact

1

2

4

5 6

3

jgadewadikar@mitre.org

Jyotirmay Gadewadikar, Chief Scientist – AI Integration and Systems Engineering

https://www.linkedin.com/in/JyoMIT

@JyoGadewadikar

Contact

	Systems Engineering Language Modeling Assistant (SELMA)
	Motivation for Generative Systems Engineering
	AI Opportunities in SE lifecycle
	AI Applications
	SELMA – Overview
	Technology Stack
	Text-to-model process flow
	Core Technical Components
	Video demonstration: Helicopter System
	Conclusion
	Challenges and Opportunities
	Future State
	Slide Number 13

