

Tradeoff Analysis using an Integrated Data-Driven and Model-Based Approach for the Design of Autonomous Robots

Sai Sandeep Damera, Praveen Kumar M.S., John S. Baras, Daniel R. Hunter Institute for Systems Research University of Maryland College Park

September 18, 2024 U.S. Army DEVCOM and SERC AI4SE & SE4AI Workshop 2024 Arlington, VA

PROBLEM ADDRESSED AND SIGNIFICANCE

Systematic Methodology and Software Tool Suite for Trusted Autonomous Systems

Critical need for many US Army and DoD missions, and also many commercial applications

HOW

Design space exploration via tradeoffs to prioritize potential investments from portfolio of modules: sensors, actuators, cyber chips, materials, engines, architectures, algorithms, new technologies, etc.

NOVELTY and VALUE

Integrating large data sets makes feasible the design of **high performance trustworthy autonomous systems** through empirical (DD) **and** formal (MBSE) validation, with changing requirements and scenarios. *Not possible otherwise. Currently major open problem.*

Our Innovative Approach

Autonomy Stack (AS)

SysML Models and

LINK TO Formal Model Tools (UPPAAL, PRISM) for Correct Task Execution, Timing analysis, Safety, Specification satisfaction, Robustness, Autonomy, Learning, Intelligence …

Design space exploration via tradeoffs to prioritize design decisions, investments, from portfolio of modules: sensors, actuators, cyber chips, materials, engines, algorithms, architectures, and new technologies.

Actions

Actuators

DEVCOM

Design Space Exploration for Robotics

- Robotic Autonomous Systems are complex.
- Design involves structural and behavioral components .
- Involve a combination of model-based and datadriven techniques.
- System Development is often distributed and adhoc, without product lifecycle management.
- *"What-if?"* questions can arise in 3 cases
- Core tenets of Systems Engineering:

Case 1: Structural Change without Behavioral Change **Case 2**: Behavioral Change without Structural Change **Case 3**: Coupled Structural and Behavioral Changes

GB-D Camer

ss cymr

SP

elodyne VLP-16

Implementation

- Autonomy Stack for Navigation
- Perception, SLAM, Planning and Control
- Implemented using ROS/ROS2

Analysis

- Design Tradeoff and Sensitivity Analysis
- Monitoring System Performance
- Performed using Python, MATLAB, Julia.

- Structural and Behavioral Modeling
- Requirements engineering
- MBSE performed using SysML

UMD-SEIL Autonomy Stacks: ROS1 and ROS2

Standardized Test Suite for TRADES-X

- Some key features of the simulation world:
	- Very large map area with distinct offroad terrain zones.
	- Procedural domain randomization tools to improve Sim2Real gap.
	- Large collection of simulation assets, materials and textures.
	- Robust synthetic data generation capabilities built-in.
	- Decoupled execution of autonomy stack and simulation world.
	- Large collection of high-fidelity sensors available: ray-traced, vision-based and contact-based
	- Support for dynamic obstacles including models of people walking.
- High-fidelity collision mechanics and physics for a wide variety of assets to build external and internal world simulations.

High Fidelity Terrain Environment with Vegetation (Nvidia Isaac Sim)

Simulation Environments: Physics

Time to Completion $\mathcal{T}_c(\bar{x})$

0

ROS-Gazebo Simulation

> ۹ \bullet

Data-Driven Multi-Objective Optimization

Data Analysis

Data-based metrics:

Basic approach to integrating model-based and data-driven optimization techniques.

Combining Model-Based & Data-Driven Trade Study *Eleved* **Material Andrew Reserved Material Andre**

Basic approach to integrating model-based and data-driven optimization techniques.

Fig: (Top) SysMLL Block Definition Diagram of the Sensor Suite

Model-Based Sensor Trade Study –Problem

(a)

- We consider a library of sensors of *4 types: Lidar, Laser, RGB Depth Camera, and RGB Camera*.
- We impose some limits on the number of sensors of each type that can be chosen. We call these the cardinality constraints $|C(\bar{x})|$
- We define a sensor configuration as: $\bar{x} = [x_1, ..., x_k]^T$

The The for Systems

where k potential sensors are available,

and {*xⁱ* } is a binary variable representing the selection of sensor *i*.

• The multi-objective optimization problem is formulated as:

 $\min_{x_1,...,x_k \in \mathcal{S}} J(\bar{x})$ Vector Objective Function

s.t. $\left|C(\bar{x})\right| < c$ - Cardinality Constraint where, $\bar{x} = [x_1,...,x_k]^T$ Decision Variable $\bar{J}(\bar{x}) = [-\mathscr{E}(\bar{x}), \mathscr{P}(\bar{x}), \mathscr{R}(\bar{x}), \mathscr{C}(\bar{x})]^T$

- The *combinatorial* problem as stated above is NP-hard.
- We exploit the nature of our objective functions and use heuristic algorithms to solve the problem.

Model-Based Sensor Trade Study: Metrics

Effective Sensor Coverage

- The Lidar is centrally mounted and has a 360-deg. horizontal Field of View (FoV). Camera, Depth Camera and Laser Range Finder are all pointed in the forward direction and have their own FoV limits.
- Each sensor type has its own *volumetric* coverage. We approximate the footprints as:
	- Lidar $\mathscr{E}(x_i) = \frac{4\pi}{3} r_{max}^3$. $\cos^2 \theta_{vfov} \sin \theta_{vfov}$
	- Camera and Depth Camera $\mathscr{E}(x_i) = \frac{\pi}{3} r_{max}^3$. $\tan (\theta_{hfov}/2) \tan (\theta_{vfov}/2)$
	- 2D Laser $\mathscr{E}(x_i) = \frac{\theta_{hfov}}{2} r_{max}^2.h_{box}$
- The bounding boxes are applied on top of these to account for ground and ceiling.
- The total effective sensor coverage of a given sensor configuration can be computed as:

$$
\mathscr{E}(\bar{x}) = \bigcup_{i=1,\dots,k} \mathscr{E}(x_i)
$$

• The metric is **sub-modular** and **monotonic**- A fact that will be leveraged for the solution.

Similarly, we have functional response models for RAM, power and cost metrics

(c) Volumetric Footprint of the Laser Scanner

(a) Volumetric Coverage (blue) of a 3d Lidar

Greedy Multi-Objective Sub-Modular Optimization (G-MOSMO)

- The design variable $\bar{x} = [x_1, x_2, ..., x_k]^T$ is a Boolean Vector with each element representing the selection of a sensor in the given configuration. We consider 4 Lidars, 4 Lasers, 3 RGB-Depth Cameras and 2 Cameras. Therefore, we have k=13.
- We impose a sensor configuration cardinality of $c = 6$. Therefore, the total no. of sensors in any configuration cannot be more than 6.
- Therefore, we have 8192 (the power set of 13 sensors) potential configurations to equip the robot. Evaluating all configurations is hard.

Fig: Schematic of the Greedy Multi-Objective Sub-Modular Optimization (G-MOSMO) Routine. Adapted from *[1]* .

[1] Collin, Anne, et al. "A multiobjective systems architecture model for sensor selection in autonomous vehicle navigation." Complex Systems Design & Management: Proceedings of the Tenth International Conference on Complex Systems Design & Management, CSD&M Paris 2019. Springer International Publishing, 2020.

- We show that the MBO routine allows us to efficiently construct the approximate pareto front for the model-based metrics for the sensor selection problem.
- In the figures below, we show how we can use G-MOSMO to select 7 design candidates out of the 96 pareto optimal configurations for the given set of model-based metrics. **These candidates will now be evaluated using simulation runs.**

Cost vs RAM vs Power vs Coverage

Cost vs RAM vs Power vs Coverage

Fig: Evaluations of all feasible designs (# Designs = 4095). We want to minimize RAM, Cost and Power while maximizing Sensor Coverage (represented here by the marker size)

Fig: Evaluation of the Pareto Frontier (**# Pareto Optimal Designs = 96**). We want to minimize RAM, Cost and Power while maximizing Sensor Coverage Candidate solutions of G-MOSMO (**# Approximate Pareto Front= 7**).

DEVCOM

Model-Based Sensor Trade Study: Method

Data-Driven Analysis–Results

Fig: Trajectory Plots of the 7 different (pareto optimal, MBO-recommended) sensor suite design configurations across 3 Test Goals in a Gazebo Test Environment **(a), (b), (c)- Mission Success 100% [Nhi=0] | (d), (e), (f)- Mission Success 33% (Nhi=2) | (g)- Mission Success 50% (Nhi=1)** Encoding Scheme used for Sensor Suite Design IDs: Bool(Vector) $\bar{x} = [x_1, ..., x_k]^T \leftrightarrow$ Decimal Ex: Design 4234→ [1 0 0 0 0 1 0 0 0 1 0 1 0] → { **VLP-16-A** (lidar) + **lms111-b1** (laser) + **realSense d455** (rgb depth cam) + **blackflyA** (rgb cam)}

Multi-Attribute Value Function Analysis

- The Table below describes the evaluation of the optimal design using the Multi-Attribute Value Function Analysis.
- For runs that resulted in failure to reach goal were assigned large penalties for Tc and Pl metrics were assigned.
- The relative weighting used for the metrics have also been shown. The design recommendation depends on these weight assignments.

Improving Design Space Exploration

- Sensitivity Analysis via Automatic Differentiation (AD)
	- Our MBO module was designed to be amenable to integration with powerful AD tools.
	- We seek to use these tools to understand how sensitive the metrics are with respect to infinitesimal variations in the input (design) parameters.
	- Can be used to synthesize a notion of hierarchy in the system requirements– *ranking of requirements according to their sensitivities.*
- Uncertainty Quantification via Variational Inference
	- The DDE module cannot be used to study sensitivities using gradients.
	- Instead, we propose the use of variational inference to quantify the (probabilistic) uncertainty in the data-driven metrics caused by the input parameters being chosen from a known distribution.
	- The input distribution captures the known uncertainty in the input space.

Fig: (top) The proposed framework for an improved TRADES-X tool. (bottom) Schematic of the autonomy pipeline from an Automatic Differentiation Perspective

Local Sensitivity Analysis

- Local Sensitivity Analysis using gradient information can be used to determine the uncertainty for each design instance.
- The Sensor Suite Selection problem, as formulated, has the following modelbased metrics:
	- Effective Sensor Coverage $\mathscr{E}(\bar{x})$
	- Sensor Suite Cost $\mathscr{C}(\bar{x})$
	- Memory Usage $\mathscr{R}(\bar{x})$
	- Power Consumption $\mathscr{P}(\bar{x})$
- The Cost metric is just the sum of the cost parameters of the sensors. The cost parameters also do not impact any other metric.
- The Memory and Power Consumption metrics are also simple, and the gradients can be easily computed.

Fig: List of lowest-level component requirements [specifications].

SysML Requirement Table shows that components of the specific design instance meet all low-level specifications. {Vel-16A Lidar, Blackfly-B Camera, RealSense435i Depth Camera, lms1xx-a Laser}

Local Sensitivity Analysis

- We use **Forward-Mode AD** to calculate the gradient of the metric with respect to the (20) aggregated input parameters of a design instance.
- For our analysis, the final design recommendation was:

Design 4234 {VLP-16-A, lms111-b1, realSense 455, blackflyA}

 $\mathscr{C}(\bar{x}) = f_{\mathscr{C}}(c^L, c^C, c^D, c^{La})$

 $\mathscr{R}(\bar{x}) = f_{\mathscr{R}}(n_{s}^{L}, n_{ch}^{L}, n_{sc}^{L}, n_{s}^{C}, p_{h}^{C}, p_{w}^{C}, n_{s}^{D}, p_{h}^{D}, p_{w}^{D}, n_{s}^{La}, n_{sc}^{La})$

 $\mathscr{P}(\bar{x}) = f_{\mathscr{P}}(p^L, n_s^L, n_{ch}^L, n_{sc}^L, p^L, n_s^C, p_h^C, p_m^C, p_p^D, n_s^D, p_h^D, p_w^D, p_{uv}^{La}, n_s^{La}, n_{sc}^{La})$

 $\mathcal{E}(\bar{x}) = f_{\mathcal{E}}(r_{max}^L, v_{four}^L, r_{max}^C, h_{fov}^C, v_{fov}^C, r_{max}^D, h_{fov}^D, v_{fov}^D, r_{max}^{La}, h_{fov}^{La})$

(a) Volumetric Coverage (blue) of a 3d Lidar.

(b) Volumetric Coverage of Cameras.

(blue) of a 2d laser.

Fig: Effective sensor coverage computation is sub-modular and combinatorial. The specific closed-form expression varies for each design instance.

$\nabla \mathscr{C}(\bar x), \nabla \mathscr{R}(\bar x), \nabla \mathscr{P}(\bar x), \nabla \mathscr{E}(\bar x)$

The gradients are computed using AD

Local Sensitivity Analysis : Design 4234

EFFECTIVE COVERAGE SENSITIVITY

Fig: SysML Requirements Containment Map.

[Blue] High-Level Requirements Mapped to Global and Local Performance Metrics for DSE.

[Yellow] Low-Level Component Specification Requirements Allocated to Components

Thank you!

baras@umd.edu

301-405-6606

<https://johnbaras.com/>

