Rapid Intelligent Systems Engineering

AI4SE & SE4AI Workshop 2024

Arlington, VA, September, 2024

Thomas Lee & Mauricio Castillo-Effen, Ph.D.

DISCLAIMER

The views and opinions presented in this presentation are solely the author's, and they do not represent the official policy or position of the Lockheed Martin Corporation or the Lockheed Martin Advanced Technology Laboratories.

© 2024 LOCKHEED MARTIN CORPORATION

Why "Rapid"?

- System acquisition is becoming agile
- Capabilities will be assembled just-in-time and at the edge to address specific mission needs
- Capabilities are added and weaknesses addressed continually
- Stakeholders need to make risk-informed decisions and use the information obtained from SE activities
- Transition from traditional waterfall V-model systems engineering to Dev*Ops transforms the view of assurance from compliance to valuedriven

New acquisition regimes are characterized by complexity and agility. Can Generative AI help?

2

Hypothesis

Tuning/Training Effort (\$Bs)

Can we build useful capabilities for SE solely on pre-trained models? Note: Usefulness does not imply validity or truthfulness

High-level Research Questions

- RQ1: If we want to introduce GenAI, how do we know what SE activities are most promising/suitable?
 - What does the sociotechnical Systems Engineering process look like today? We need to create a "map" of SE activities, tasks, and roles and where AI has the best chances to help.
- RQ2: How would we measure improvements?
 - Intuitively: feed system with and without AI the same task, define acceptance criteria for generated outputs
 - Prerequisite: Qualify/quantify SE tasks by their "size" and complexity. Define what is a "big" task and what is a "hard" task.
- RQ3: What are possible GenAI configurations?
 - When we say "Generative AI," are we saying just GenAI solutions or possibly optimized prompt engineering, fine-tuning, combinations of GenAI with other forms of AI/ML, or other tools (simulation, verification, optimization, etc.)?
- RQ4: What experiments could demonstrate improvements empirically?
 - Formulate structured experiments and use cases

LOCKHEED MARTIN

INCOSE's Competency Framework

Competency := observable, measurable set of skills, knowledge, abilities, behaviors, and other characteristics an individual needs to successfully perform work roles or occupational functions.

Integrating	Core
oject	Systems Thinking
anagement	Lifecycles
nance	Capability
ogistics	Engineering
uality	General Engineerin
	Critical Thinking
	Systems Modeling
	and Analysis

Systems Thinking Lifecycles Capability Engineering General Engineering Critical Thinking Systems Modeling and Analysis	Core	
Lifecycles Capability Engineering General Engineering Critical Thinking Systems Modeling and Analysis	Systems Thinking	
Capability Engineering General Engineering Critical Thinking Systems Modeling and Analysis	Lifecycles	ł
Engineering General Engineering Critical Thinking Systems Modeling and Analysis	Capability	
General Engineering Critical Thinking Systems Modeling and Analysis	Engineering	
Critical Thinking Systems Modeling and Analysis	General Engineering	
Systems Modeling and Analysis	Critical Thinking	ł
and Analysis	Systems Modeling	
	and Analysis	
		•

Professional
Communications
Ethics and
Professionalism
Technical
Leadership
Negotiation
Team Dynamics
Facilitation
Emotional
Intelligence
Coaching and
Mentoring

Management	Technical
Planning Monitoring and Control	Requirements Definition
Decision Management Concurrent Engineering Business and Enterprise Integration	System Architecting Design for Integration
Acquisition and Supply	Interfaces Verification
Information Management Configuration	Validation Transition
Risk and Opportunity Management	Operation and Support

To be truly useful, a GenAI assistant must possess the key competencies defined in the INCOSE framework for systems engineering

LOCKHEED MART

Ρ

Lc Q

5

Example Competencies and Use Cases for Applying GenAl

Competency	INCOSE Definition	Exemplar Use Cases
Requirements Definition	To analyze the stakeholder needs and expectations to establish requirements for a system	 Extract candidate requirements from a Concept of Operations Represent stakeholders Extract tentative formal representations from natural language requirements
System Architecting	The definition of the system structure, interfaces and associated derived requirements to produce a solution that can be implemented	 Formulate many alternative structures and allocate requirements to components Formalize informal architecture definitions
Design for	Ensuring that the requirements of all lifecycle stages are addressed at the correct point in the system design	 Identify *ility tradeoffs Formulate design and optimization problems
Interfaces	The identification, definition and control of interactions across system or system element boundaries	 Formulate potential contracts (vertical, horizontal) Identify modularity, scalability, and interoperability issues

We have identified several potentially high-value use cases

Generative AI for Rapid SE

Can we boost GenAl's utility and mitigate weaknesses?

7

Basic Pattern

Another alternative: LLM generates "good guesses" that are sent to a checker/verifier

Outsource weaknesses of GenAI to trustworthy, verifiable and reliable tools/agents

Cognitive Agentic Systems Engineering

- LLMs do not negate the need for thoughtful, systematic, and iterative thinking, which is a core principal of systems engineers
- The usefulness of LLMs comes when integrated into a robust architecture that supports both cognitive and agentic thinking
- When we solve problems, we think of potential functional solutions and through research, reasoning, and iteration, arrive at good solutions
- We almost never solve complex systems engineering problems zeroshot off of our pre-trained memory. The majority of the time we are really iterating through the cognitive processes outlined in the 5E model [1].

Hypothesis: Can we transform "System 1" standalone GenAI models into "System 2" assistants using cognitive agentic methodologies?

[1] BSCS Science Learning. (2006). The BSCS 5E Instructional Model: Origins and Effectiveness. BSCS.

Cognitive Agentic Process for Existing Systems

Conclusions

- AI4SE solutions must be trustworthy and verifiable
- Current standalone GenAl solutions lack these properties. Existing interfaces are "broken" and "deceptive"
- GenAI solutions seem promising when augmented with cognitive and agentic capabilities allowing them to ask questions, think over periods of time and reason over outputs from trustworthy and verifiable tools
- Defining metrics will be critical to ensure the AI is improving the quality and speed of the Systems Engineering practice in meaningful ways

