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Background
• Air Force shifting towards Adaptive Basing (AB) concept 

• AB requires rapid, reliable transport from central Hub to satellite Bases 

• Current manual, heuristic approaches used by Logistics Planners (LPs)

• Existing methods use deterministic approach and lack to capture uncertain scenarios

• Sophisticated logistics planning needed for Course of Action (COA) development 

• COA specifies equipment, supplies, personnel assignments and vehicle movements

• Constraints: vehicle availability, cargo capacity, performance, cargo attributes

• Route options needed for clearance issues, weather, vehicle limitations, no-fly zones
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Objective
• To leverage a framework that combines simulation and optimization techniques for multi-mode 

logistics planning in military environments

• Incorporate risk factors and uncertainties into the logistics planning process for enhanced 

resilience and robustness

• Address the hierarchical nature of logistics decision-making that captures strategic and tactical 

decisions

• Demonstrate the effectiveness of the proposed framework through a case study and discuss its 

implications for military logistics decision-making
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Multi-Mode Adaptive Logistics Planning 
System (M2ALPS) - Methodology

• Simulation:

▫ Models air/ground networks linking supply 

to demand

▫ Simulates goods flow with vehicle and route 

constraints

▫ Uses statistical distributions for 

speed/loading times

▫ Incorporates no-fly zones and clearance 

processes

• Stochastic Optimization:

• Generates resilient plans for worst-case 

scenarios

• Manages fleet allocation for base demands

• Considers vehicle, capacity, time, and 

clearance constraints

• Minimizes delivery time, flight time, and cost

• Objectives: effectiveness, efficiency, and multi-

objective
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Simulation Environment

5



Hub to 
Base(s) 

Distances
- GCD
- SPR 

Vehicle 
Options

• Aircrafts
• Trucks

Cargo & 
Priorities

• Fuel, 
• airfield 

operations
• Munitions
• aircraft spares 

and 
maintenance 
equipment

• communications, 
• general, etc.

MULTI-MODE ADAPTIVE 
BASING LOGISTICS PLANNING 

SYSTEM 

• Stochasticity
• Resilience
• Digital-Twin

Course of Action (COA) & 
Visualization

• Aircraft Routes 
Assignment

• Cargo Assignment

6

Performance 
Metrics & 
Sensitivity 
Analysis

Aircraft Performance& 
Cost Data-base

Realtime Aircraft Flight 
Status

Real-time Data Feed

Architecture
Clearance 

No-Fly Zones



Optimization Model - Inputs

Base Location Great Circle 
Distance from 
Hub (nautical 

miles)

Shortest Path 
Distance from 
Hub (miles)

D1 5821 4485

D2 3919 2937

D3 3572 2481

D4 716 529
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Table 1: Distance Matrix – Input Data



Optimization Model – Parameters

Total Processing Time for each Trip – All Vehicles

Worst – Case – Optimization: 

• Mitigating Uncertainty: Ensures 
transportation plans withstand uncertainties 
in vehicle performance and external 
disruptions.

• Decision-Making Resilience: Provides reliable 
logistics under worst-case scenarios, 
optimizing costs and timelines effectively.

NTE: Not to Exceed Time Constraint – Parameter for Worst Case  
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Optimization Model – Objective Function

• Cost Minimization (Efficiency)

• Make span Minimization 
(Effectiveness)

• Worst Case Optimization

• Multi-Objective Approach
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Optimization Model – Constraints
• Job Quantity Assurance: Ensures full assignment of required job quantities across all vehicles and 

shifts.

• Capacity and Availability Compliance: Restricts job assignments to vehicle capacities, adjusted for 

availability.

• Sequential and Timely Execution: Maintains logical sequence and timing between shifts, limiting 

the gap to ensure continuity
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Optimization Model – Constraints
• Priority Enforcement: Prioritizes higher importance jobs, scheduling 

and completing them before others

• Robust Timing: Ensures total completion time remains within limits, 

even under worst-case scenarios.
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Sample Median Approximation Method

•  Generates multiple worst case scenarios by sampling from the probability 

distributions of uncertain parameters (speed, load/unload times)

• Enhances model reliability by providing solutions that perform better under 

various worst-case scenarios
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Case Study – Min Make Span – 
Effectiveness

Under no Worst-Case Scenario

Under 10% Worst Case Scenarios
Under 10% Worst Case Scenarios & Max 

Acceptable 95th %-tile Worst-Case

Max Acceptable 95th -%tile Worst Case – 
Constraint
• Parameterize the 95th Percentile Worst Case 

Completion Time
• Constraint the Model to ensure that the 

completion time does not exceed 75 hours
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Case Study – Min Cost – Efficiency 
Under 10% Worst Case Scenarios

Under 10% Worst Case Scenarios & Max 
Acceptable 95th %-tile Worst-Case

14



Case Study – Min (Multi Objective)
Under 10% Worst Case Scenarios

Under 10% Worst Case Scenarios & Max 
Acceptable 95th %-tile Worst-Case
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Comparison of Objectives & Sample COA

S: No Objective
Total 
Time

Total 
Cost

Total 
Trips

1 Min Makespan 64 247 25

2
Min 

(0.5*Makespan 
+ 0.5*Cost)

72 231 23

3 Min Cost 95 234 23
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Total trips: 23
Total cost: 234.70

Total completion time: 95.00

Table 2: Comparison Between Objective 
Values



M2ALPS – Tool Kit
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AI-Enabled Multi-Mode Adaptive Logistics 
Planning System (M2ALPS) 
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• Computational Time to run 100 scenarios 
using SMA takes ~ 30 to 40 Minutes 

• Leveraging Machine Learning reduces 
computation time while maintaining accuracy 
in predicting key objectives.

• How can we use AI-driven methods to make 
better logistics decision-making – better 
solutions at computational quality?



Dataset – Simulation-Optimization

• Input

• num_vl: Number of very large vehicles

• num_l: Number of large vehicles

• num_t: Number of trucks

• vl_capacity: Capacity of very large vehicles

• l_capacity: Capacity of large vehicles

• t_capacity: Capacity of trucks

• processing_V_D: Processing time for each vehicles 

at the corresponding demand locations

• Demand_D: Demand Qty at each Demand 

location
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• Output

• total_trips: Total number of trips predicted

• total_cost: Predicted cost for each trip

• total_time: Predicted competition time for each 

trip

• Ran 2000 runs for the two objectives (Time, Cost)



Machine Learning – To Predict Objectives
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• Utilize data generated from simulation-optimization

• Random Forest to predict key logistics metrics: Total Completion Time 

and Total Cost

• Extracted feature importance to identify the most influential variables 

driving these outcomes

• Generated decision trees to reveal critical thresholds and decision points 

for logistics optimization



Training of Random Forest & Decision Trees
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S : No Model Objective RMSE R2
1 Random Forest Total Time 2.85 0.79

2 Decision Tree 
Regressor

Total Time 4.20 0.71

3 Random Forest Total Cost 2.25 0.82

4 Decision Tree 
Regressor

Total Cost 3.50 0.75

Table 3: Performance Metrics of the machine 
learning models



Feature Importance - Total Completion Time & 
Cost
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Decision Trees - Total Completion Time
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Decision Trees - Total Cost
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Inference on Total Completion Time
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• The most critical factor for completion time is truck processing at D4, with a threshold of 17.5 
units; keeping this below 17.5 significantly reduces completion time

• If trucks process quickly at D4 (≤17.5), truck processing at D2 (threshold of 79.5 units) becomes the 
next key factor for further optimization

• For slower trucks at D4 (>17.5), further optimization is possible if trucks can process at D4 in 18.5 
units or less

• Efficient truck processing at both D4 and D2 highlights the VL vehicles' processing at D3 
(threshold 22.5) as the next important factor

• The tree shows a hierarchy: Truck processing > VL processing > L processing in impact on 
completion time



Inference on Total Cost
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• VL vehicle processing at D1 is the most critical factor for cost (threshold: 37.5 units), 
followed by L vehicle processing at D3 (threshold: 21.5 units) in faster scenarios at D1

• For slower VL vehicles at D1 (>37.5), L vehicle processing at D1 becomes important 
(threshold: 32.5 units)

• Truck processing at D4 (threshold: 17.5 units) impacts total cost across multiple scenarios

• The cost-impact hierarchy is VL processing > L processing > T processing

• Efficient processing of vehicles across D1-D4 is key for optimizing total cost



Conclusion

• Developed a multi-mode worst case stochastic optimization model

• Utilized sample median approximation method to simulate numerous scenarios 
and optimal decisions

• Running scenarios > 100 took higher computation time

• Applied machine learning techniques to obtain feature inference for the multi-
mode logistic optimization problem

• Need for more nuanced ML models to predict decisions for vehicle allocations
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