

SEPTEMBER 17-18, 2024 Arlington, VA

Accountability for Al Enabled Systems used in Critical Decision-making Andy Lacher, NASA Langley Research Center September 2024

T. P.

6.0

Premise

For concepts that leverage increasingly autonomous systems (including those that are AI-Enabled) to be viable, there needs to be clarity regarding accountability for decisions and outcomes

- Challenges associated with clearly defining roles and responsibilities for increasingly automated processes

 Responsibility, authority, and accountability
- Stakeholders concerned with accountability

Authority, Responsibility, and Accountability

O ACCOUNTABILITY

The obligation to answer for an action taken by a responsible entity

AUTHORITY

The power to give orders and/or make decisions.

RESPONSIBILITY ¹

The obligation or duty to carry forward an assigned task to its successful conclusion; this is closely coupled to the authority.

- Today: automation has <u>limited</u> authority and responsibility
 - Revokable by the human
- Future: <u>Significantly greater</u> responsibility and authority to make decisions and act, <u>delegated</u> by humans

Accountability can only reside with a human or human-based organizational entity

7 Principles for Trustworthy Al

Emphasis on Requirements

 Mechanisms in place to ensure accountability for AI systems and their outcomes

Accountability for AI System in Aviation

- "AI may have a degree of control authority over specific flight functions but is not accountable for anything"
- Talks about "Aberrant Behavior" and the need to account

https://www.faa.gov/aircraft/air_cert/ste p/roadmap_for_AI_safety_assurance

Shifting Decision-Making

Human-centric decision-making

Accountability Relatively Straight Forward

Shift to automated decision-making

Clarity on Accountability Required

> Designer? Maintainer? Operator? Data Provider?

Considerations

Root Cause Analysis / Causal Analysis

Adapted from James Reason (Hampshire: Ashgate Publishing Limited, 1997). *Deepwater Horizon* Accident Investigation Report, September 8, 2010 https://www.sec.gov/Archives/edgar/data/313807/000119312510216268/dex993.htm

Function

Actor(s)

Accountable

Party

Required Tool(s)

Optional Tool(s)

Approved for Release STRIVES: 20240010805

Our New Model – Accountability Chain

- •Desired Outcome: The specific result the functional process is attempting to realize.
- •Functions: Specific activities that need to be performed to contribute to the desired outcome.
- •Actors: The individuals or <u>systems</u> that have the authority (power) and responsibility (obligation) to perform a function.
- •**Tools:** Capabilities, devices, and systems leveraged by actors to perform the function.
- •Accountable Parties: While often actors are also the accountable entities, in some cases an organizational entity that manages a system may be the accountable entity.

Conceptual Exploration into Shifts in Conflict Management

eXtensible Traffic Management (XTM)

 Concept of Operations

 V1.0

 Bides and Responsibilities

 Scenarios and Principles

 Principles

Upper Class E Traffic Management (ETM)

Unmanned Aircraft System (UAS) Traffic Management (UTM)

Automated decision-making Shared information Operator responsibility for conflict management Cooperative operating practices

Moving Forward

- NASA
- Is clarity associated with accountability a critical barrier to the viability of the use of highly automated system (including Al-enabled systems) in critical operations?
- Can the barrier be overcome?

The Accountability Chain methodology could be a means to analyze accountability for increasingly automated operating modes in which multiple parties have interdependent roles

Thank You

Andrew.R.Lacher@nasa.gov David.Wing@nasa.gov

THE AIRCRAFT AND BEYOND: AUTONOMY AT THE SYSTEMS LEVEL

5th Annual ASTM Autonomy in Aviation Symposium

NOVEMBER 12-13, 2024 SANTA CLARA, CA

REGISTER NOW

Backups

NAS

Detailed Framework for a Digitally Enabled Operating Mode

ICAO Layers of Conflict Management

ICAO Conflict Management ¹	Visual Flight	Digital Flight	Instrument Flight (ATM Services)
Strategic Conflict Management "Achieved through the airspace organization and management, demand and capacity balancing and traffic synchronization components; Aim to reduce the need to apply the second layer — separation provision "	 Procedures, Practices, and Airspace Structure Traffic Pattern Ordinal Altitudes Routes, Flyways 	 Traffic Flow Management & Airspace Structure Cooperative compliance (PC-4) Self organization (PC-5) Self limiting (PC-6) 	Traffic Flow Management & Airspace Structure • Executed via ATC
Separation Provision "Tactical process of keeping aircraft away from hazards by at least the appropriate separation minima; Only used when strategic conflict management cannot be used efficiently."	 Remain Well Clear Airspace user is the separator for its activity in respect of one or more hazards Visual separation, assisted by technology CDTI FLARM 	 Self-Separation Airspace user is the separator adhering to a defined minima in respect of one or more hazards Operator self-separation (PC-1) Cooperative conflict management (PC-2) Adaptive pair-wise separation (PC-3) 	 Separation Services Radar separation Procedural separation
Collision Avoidance "Must activate when the separation mode has been compromised; Not part of separation provision; Must be compatible with separation provision mode."	 "See" and Avoid Pilot vision CDTI – Traffic Alerting TCAS (in some cases) 	 "See" and Avoid Pilot vision (optional) TCAS/DAA (in all cases) 	 "See" and Avoid Pilot vision TCAS/DAA (in most cases)

1: International Civil Aviation Organization, ICAO Doc 9854, Global Air Traffic Management Operational Concept, First Edition-2005.

Shifting Decision-Making – Digital Operations

- Dependence Upon Automation
- Expansion of Operator Role in Conflict Management
- Conflict Management with Instrument Flights
- Dependence Upon Information and Connectivity Services
- Dependence Upon Operational Intent

What is an Operating Mode?

Regulatory, procedural, and technical means for aircraft to <u>operate safely</u> within the airspace

aka "flight rules" as defined in regulations, policies, procedures, training materials, ...

Routine Operating Modes

<u>Widespread</u> use in most airspace classes <u>Routine</u> for pilots & controllers

Visual Flight Rules (VFR)Instrument Flight Rules (IFR)

Specialized Operating Modes

<u>Limited</u> to certain operations and/or airspace incompatible with VFR & IFR <u>Routine</u> for pilots who use them; <u>Nonroutine</u> for controllers and other pilots

- State/Military Aircraft
- Moored Balloons / Kites / Amateur Rockets / Unmanned Free Balloons
- Ultralight Vehicles
- Parachute Operations
- Small Unmanned Aircraft Systems