

AI AIDED DESIGN AND DEVELOPMENTFOR SPACE SYSTEMS

Michael Orosz, PhD¹ Alefiya Hussain, PhD¹ Robert Lai, PhD² ¹USC Information Sciences Institute ²Aerospace Corporation

What Are We Trying to Do and Why

- Over the last decade, the threat landscape has evolved and the space domain is being targeted by adversaries using cyber means
- There is a strong need to design and protect against cyber threats with space system design to determine minimizing risk areas and then adding cybersecurity requirements to reduce cyber risk
- Wide range of expertise involved in design and development of space systems (SV, payloads..)
- Various levels types of entities with diverse set of resources (e.g., commercial, government, university)
- Cybersecurity risk assessments and awareness needs to start from the early phases of system development.
- But it also spans the whole development lifecycle through operations and sustainment

Memorandum on Space Policy Directive-5—Cybersecurity Principles for Space Systems

Compliance-Driven Spacecraft Development Initiatives

- Step 1: A policy document (e.g., DODI 8510.01, NASA NPD 2810, NASA NPD 1000.0) which describes a high-level security strategy
- Step 2: Which then points to an overarching risk management framework (RMF) process (e.g., CNSSI 1253, NASA NPR 2810, NASA NPR 7150.2E) which specifies a "control baseline" using the Low-Moderate-High watermark approach.
 - The control baseline with high-level guidelines is usually where the guidance stops.
- Step 3: These baseline controls need to be translated by a system designer to decompose what the control baselines text means into implementable technical requirements.

https://aerospace.org/paper/cybersecurity-protections-spacecraft-threat-based-approach

A Diverse Team for Space System Design

Designing a space system involves a collaborative effort from various professionals with specialized expertise.

- Engineers
 - Systems Engineers, Aerospace Engineers, Electrical Engineers, Mechanical Engineers, Software Engineers

Scientists

- Astrophysicists, Planetary Scientists, Computer Scientists
- Other Professionals
 - Mission Managers, Project Managers, Safety Engineers, Procurement Specialists

The specific roles and responsibilities may vary depending on the nature of the space system and the organization involved. However, a successful space system design requires a multidisciplinary team

The Challenge: A cybersecurity expert is typically missing from the team Second Challenge: The cyber attack environment is dynamic

Initial Research Effort

- Long-term goal is to create a system that addresses the complete space system design lifecycle.
- Initial step: Explore using AI to analyze different design options and suggest configurations that are inherently more secure and meet SPD-5 requirements.
 - Research question: Can an LLM be trained to identify if necessary cyber security controls are present in a space system design?
- Test Environment
 - We selected the Llama 3 LLM as this is a well understood LLM with extensive research support
 - Implemented on the USC/ISI GPU Éclair cluster.

Provided AI-based Guidance during the Space System Design

Cybersecurity for Space Design

- RAG (Retrieval-Augmented Generation) a specialized query tool that utilizes LLMs to retrieve information from a "knowledge" base.
- We will use RAG to query the trained LLM to ask the AI the following questions regarding an existing space system design.

Increasing level of cybersecurity and space SME expertise Level 1: What does scanning mean?

Level 2: What are the relevant controls to prevent scanning (NIST 800-53 with space overlay, CNSSI 1253) What are attacks related to scanning? (SPARTA Attacks)

Level 3: Which controls are most relevant to the SPARTA exfiltration TTP?

Level 4: Is SC-5 applicable for this SV design?

Level 5: Which controls are needed to meet the cybersecurity requirements in this design?

Current Status

- Have trained the LLM to recognize/understand an initial set of cybersecurity policies and controls (e.g., SPARTA) and space systems design.
- Duplicates what we would expect to see from current state-of-theart such as OpenAI/Google Gemini.
- For example, "What attacks involve firmware?"

These measures can help prevent or mitigate firmware-related attacks and ensure the security of spacecraft systems.

Cybersecurity in the Lifecycle of Space System Development

Compliance with policy and the risk management framework (RMF) at every stage of the system lifecycle

Steps applied at each step of the lifecycle process

Level 1: Implement testcases to evaluate scanning (what are we looking for?) Level 2: Implement testcases to evaluate attacks related to scanning (SPARTA Attacks)

Level 3: Define tests to evaluate conformance for a set of controls

Level 4: Define conditions in which the system fails to meet the controls Level 5: Analyze how the system complies to a set of cybersecurity control requirements

Waterfall, Agile/DevSecOps or Hybrid

Design Developments

Concept

Requirements

Integration & Testing

Pre-deployment

Deployment

Sustainment

Decommissioning

Path Forward

- Complete training and testing of the prototype
- Demonstrate the technology to Aerospace Corporation leadership and interested parties with US Space Force (end of Sept 2024)
 - MVP to provide AI-muse to guide cybersecurity compliance at early stages of design.
- With longer-term funding: Address the full lifecycle
 - Fine-tune based on increasingly complex space system designs
 - Apply to evaluations of systems; testing and evaluations, penetration testing
 - Specialize to different domains: cloud security, critical infrastructure

Thank You Mike Orosz <u>mdorosz@isi.edu</u>

