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RESEARCH OVERVIEW Ses Chalenges

+ Authorities
+ Leadership
* MOtivaﬁOIl * 85" ]J_E‘!‘S_|]E(:ﬁ‘l.’ﬂs _
+ Capabilities & Requirements  SoAS Challenges

. . . = Autonomy. lnte: endencies., « §p; :
o Advancements in AI/ML have enabled autonomy in engineered < s s ey

and ‘Ernerge.noel * Emergence, Satety, and
systems that reduce human workload and involvement in * Testing, validation, and Performance
.. learning * Architecture & Integration
hazardous missions. * Principles + Test & Evaluation
o Autonomous engineered systems can be integrated into £ UREARDSMIGS: Hy SR
L. . oo, . . . AI/ML Challenges Challenges
existing SoSs to improve mission capabilities, evolving it to a » Data availability & - Safety
preprocessing + New failure modes
System of Autonomous Systems (SoAS). i Unceslsiastle & i Eysiviie bahavior &
. . . irreproducible results unpradictable
o Autonomy comes in different levels (LoAs), each associated i Venfeabon & VRl datian SRR
with uncertainty that makes the SOAS integration and Test and [ Sesdce : :ﬁf{i‘f“ﬁmﬂ 2
. . alidation
Evaluation (T&E) very challenging. + Security breach

* Research Questions

o How to examine the impacts of integrating varying LoAs into
an existing SoS during the development phase?

o How to develop a generic architecting method to manage the
complexity of SOAS integration while it is applicable to
various domains?

. . .. Executable MBSE architecture with LoA  Bayesian Network built for SOAS T&E
o How to evaluate an SoAS while accounting for uncertainties

and emergent behaviors due to varying LoAs?
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LEVEL OF AUTONOMY (LOA)

* Traditional definition of autonomy in SoS:

* Managerial and Operational autonomy: Constituent systems operate and are managed independently.

* Definition of autonomy in Al and autonomous systems:

* The ability of a system to sense, perceive, analyze, communicate, plan, make decisions, and act/execute, to achieve its goals as assigned

independent of human intervention.

* LoA refers to a set of these autonomous capabilities provided by a system, depending on its Al technology.

SoS (as-is)

SoAS (to-be)

Levels Definition

Hands-on Supported by driver assistance abilities such as lane-keep
assist, awto cruise control, parking support

Hands-off Supported by an autopilot requiring constant artention

Eves-off still Supported by a human under any emergency situa-

via a rouchscreen

tions with communication by speech, gesture control, or

Mind-off No human intervention

Fully Au- | No human intervention, no steering wheel, no pedals, no

tonomous breaks, even no windshield

Constituent Systems:
* are engineered
systems
* have well-defined
requirements,
behaviors, V&V, ...

The concept of LoA is missing in SoS, as defined in AI/ML literature,

but it 1s crucial to be considered in SOAS

= Constituent Systems are a combination of Legacy and autonomous
engineered Systems with varying LoAs
* Challenges due to LoA are:
* impacts on organizational policies
* impacts on human-systems integrations
* incompatibilities in interfaces and data types between legacy
and aulonomous systems
= cybersecurity needs due to data exchange and communication
* Selecting the suitable SoAS architecture while accounting for
uncertainty due to Al/ML and varying LoAs
* Explaining root causes for SoAS-level undesirable emergent
behaviors

Torkjazi, M., & Raz, A. K. (2024a). A Review on Integrating Autonomy into System of Systems: Challenges and Research Directions. IEEE Open Journal of

Systems Engineering. https://ieeexplore.ieee.org/document/10669760
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THE PROPOSED SYSTEMS ENGINEERING METHODOLOGY

~ SWOT
= 6| S0S lexicon
SoS (as-1s) == ¥ ¥ co— = 6 ,,,,, _— —
5 a . o ‘ ‘EE' * The architecting method employs the UAF
I o B = = and OOSEM to build various executable LoA
= B architectures and simulate their performance.

| —netil ] ]

SoAS MBSE execntable
Architectures

O0OSEM

model Cleaned Data § C. Identifying ) _BN nodes I E.Analyzing E
J 0 BN nodes | | S0AS I
T
¢ The T&E methOd emPIOYS H _-T*': E:E'ﬁgb‘-ti;lé--‘; Evaluatiom Dhata I-B--I;r:"prc-n-l.,-'_;u-'é": "'JE
. - L) L I et
Bayesian Network (BN) and {_Svaluation data | [ N z
. . m
Machine Learning (ML) to ﬂ . S _

: b : Cleaned Data 1 D. Identifying | — [ ! L
provide a decision-making _ = o | BN arcs -_ _ L
dashboard to explore the design =~ "X, === R i~ g g “*:;:Eﬂ I
space. - - "E,; B BN structure learning - s

net it R R algzorithms. ' e

M TP T

such as Tabu search, K2, ...

S0AS executable model
. Torkiazi M.. & Raz. A. K i - . . . . Bayesian network
orkjazi, M., az, A. K. (2024b). Model-Based Systems Engineering (MBSE) Methodology for Integrating Autonomy into a System of Systems Using the Unified
Architecture Framework. INCOSE International Symposium, 34, 1051-1070. https://doi.org/10.1002/iis2.13195
» Torkjazi, M., & Raz, A. K. (2024c). Predictive and Prescriptive Analyses of Autonomy Integration into the System of Systems. In A. Salado, R. Valerdi, R. Steiner, & L.

Head (Eds.), The Proceedings of the 2024 Conference on Systems Engineering Research (pp. 213-228). https://doi.org/10.1007/978-3-031-62554-1 14 GEORGE MASON UNIVERSITY 4



CASE STUDY: SEARCH AND RESCUE (SAR) SOS

* Assume that the current SoS operations result in low-efficiency rates of fuel and the stakeholders desire to investigate
improvement alternatives for the systems.

* One approach is using new autonomous systems available in the market that consume less fuel.

Operational tigh Level Taxonomy [ HighLeveloperatonsiConceptt | uc [Operational Processes] Operational Processes [ % Use Case | J

|

SAR SoS$
- « Searching Unit

ﬁDI:tressed People & P - - "’_’_,....--
Gaaicdi \ Help Signal " . ' orEs =
ks \ el - Rescue Rescue a miu“"’f Search /
Vg ¥ g distressed person :
-
Estimated Location R -
il  Exact Location -I* |ﬁlﬂﬂ|udﬁ.l gincludes

- — = = =

e ™ —Exaet Location
- - Sy - - - -
Searching Unit i B Road T~ 0 | _Controlling Unit
~ s A Rescue ;
e s impact _gincludexs \
impact ™~ -~ Wnpact -_— = —
- o )r:ﬁnahr:e the data i..
g Li
Rescuing Unit Weather
Weather
Road

OBJECTIVES
1) Identify the legacy systems to be replaced with autonomous systems

2) Determine the most suitable LoAs of autonomous systems that improve the SAR mission
effectiveness metrics while considering uncertainty due to AI/ML
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ANALYZE STAKEHOLDERS NEEDS

(Resources Process Flow [@ Function1 ]J
Operational High Level Taxonomy [ AighLevelOperatonalConcept | J uc [Operational P ] Operational Pr [&o Use Case ]J wPerzons &r sResourceArchitectures g, «ResourceArchitectures g, | «ResourceArchitectures g,
Target Controlling Unit Searching Unit Rescuing Unit
[ |
SAR So$ e - _
Distressed People —— Searching Unit input 'F'mm QD
Search 7 i \ Help Signal ™ cincludes— e ey ‘eFunctionActions [| Processing «FunctionActions [0
v \ S (Rescue Rescue a = ’ 5 oitput the signal Searching
4 M S distressed person SEEIE 1 ) the
Estimated Location S — TERE ME estimated
PRSI | Exact Locaton ' |(I1¢bde; cincludes L, region
Semching linkt K\Emay“)my ‘Conlrollihﬂunn o >’Rescmm;mm Road \>’—L‘ /Comrolling Unit |
N Wi A Rescue ;
e e impact ; Jnibde) g 4 — -
Impact 6 " A Analyze the data | "m“":""'im“ ":m""“' 4
Rescuing Unit Weather ﬂ'ﬂ_) T
Weather Road input il £
Going to the
rﬁ‘\ r—.‘% . mn
€)) (b) : sFunctionActions “FunctonActions |
. . . = h N
(a) Operational concept; (b) Use case diagram Resources Structure [ 5| SAR Architecture | 'J «ResourceArchitectures g, =
SAR Domain
Y @ aResourcefrchitectures g, aPersons EHT aMaturalResources
- . 4 -/
Py ! . SAR Arch Target Environment
- I t
_-""'-' hJ “\\.
k"-' \_‘
eResourcedrchitectures eResourceArchitectures
B Y - Y aMaturalResources @
Searching Uni Rescuing Unit Controlling Unit Weather
TN 7 “ Pilot oSy stems «Persons EI:T aSystems [‘:] Roads
¥oor N . r 4 IR A BN — E;,- Ambulance Nurse 1 c2
-
o \Ii E E I;Ii - -" & &] ® m Co-Pilot aFersons ﬁT aPersons E;" aFersons (| «Persons U
- - v Driver Nurse 2 Supervisor Controller
==
Levels of the SoS based on the lexicon psCopter

Resources Process Flow .

Output:

SoS “as-1s” architecture and activities

Resources Structure
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ANALYZE STAKEHOLDERS NEEDS

req [Reguirements] Reguirements [ SWOT Analysis ])

Profile Diagram SWOT Analysis [ SWOT Analysis ]J
«Metaclass»
Class
_extension_Requirement_base_Class
«enumeration»
swotType
«stereotype» [R] Strength
Requirement Weakness
[Class] Opportunity
Threat
T «Metaclass»
«stereotype» Dependency
swotDocumentation
[Class] I I I
«stereotype» «stereotype» «stereotype»
+SWOT Type : swotType impactedBy | expressedBy includedin
[Dependency] || [Dependency] | [Dependency]

Strengths

xzwotDocumentation s
Rescue Team

Id = "swot-1"
SWOT Type = Strength
Text ="We have a great
experts in the rescue team
that help with lowering the
rescue time and increasing
the mission effectiveness.”

Weaknesses
xswotDocumentations xswotDocumentations
High Mission Cost Low Time Efficiency
|d = "swot-2" |d = "swot-3"
SWOT Type = Weakness SWOT Type = Weakness
Text = "The fuel Text = "The searching time

consumption expenses for
the searching unit is high.”

wswotDocumentation s
Lack of S5E Processes

|d = "swot-4"

SWOT Type = Weakness
Text = "Currently, the SAR
mission doesn't employ SE
processes to improve the
mission effectivensss.”

until the target is found is
usually high due to human
performance errors and low
video quality.”

wswotDocumentations
Human Errors

|d = "swot-G"

SWOT Type = Weakness
Text = "Personnel
performance may degrade
during working hours."

Opportunities Threats
«swotDocumentations 3w otDocumentation s «3wotDocumentation» «3wotDocumentation
State Funding Autonomous Technology Lack of SE Framework Expenses
Id = "swot-107 Id = "swoft-5" |d = "swot-137 Id = "swot-9"

SWOT Type = Opportunity | [SWOT Type = Opportunity

Text = "The state officials || Text = "The new autonomous
has offered a generous technologies such as drones can
grant to improve the SAR | |help us to improve the searching

The UAF Profile Extension for including the MBSE SWOT
analysis

Outputs:

the to-be SoAS capabilities,
replaceable system, and risks

SWOT Type = Threat
Text ="There is no
established SE framework
for a safe and effective
integration of autonomous
systems.”

SWOT Type = Threat

Text = "Integrating
autonomous systems
requires the integration of
new interfaces and pilots that
yields higher expenses.”

Mission units.” unit.”
«3wotDocumentations wswotDocumentation s
GMU Systems Engineers UAF
Id = "swot-11" Id = "swot-127

SWOT Type = Opportunity
Text = "The GMU SE team
has the required expertise for
using new tools and methods
to plan the integration.”

SWOT Type = Opportunity
Text = "The UAF provides the
required tool for planning and
evaluating the integration.”

«3wotDocumentation» «3wotDocumentation»
CyberSecurity Environment
|d = "swot-7" Id = "swot-8"

SWOT Type = Threat

Text = "The autonomous
technology may be hacked
and operators lose control
over them."

SWOT Type = Threat
Text = "Environmental
conditions such weather,
roads, etc. impact the
operation of entire So0AS,
especially autonomous
systems.”

GEORGE MASON UNIVERSITY




ANALYZE STAKEHOLDERS NEEDS

* Strategic Taxonomy view summarizes identified capabilities and their corresponding MOEs.

* Requirement table shows the identified mission and stakeholders’ requirements.

Strateqgic Taxonomy | @ Strategic Taxonommy ]/J

aCapabilitys @ Requirement Table | §5IEE Reguirements ]/J
Rescue Targets Cuickly -
measuremen:s # | £ Mame | Text
I 0 [wme Rale : Real 1 C&l 1 Mission Time Total mission time shall be less than 1.5 hour
aCapabilitys @ 3 . , The autonomous systems and their interface
Consume Less Fuel (&l 2 Security breach shall be secure to cyber attacks
MEdSLUMEmeEnLS ‘) s .
xMeasurement»Fuel Consumption Rate . Real ; (&l 3 Fuel Consumption | TotalFuelCansumption shall be less than &
aCapabilitys @
Have Least Down Time

MEedSUremenis
«MeazurementzAvailabilityRate : Real
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ANALYZE SYSTEM REQUIREMENTS & DEFINE LOGICAL ARCHITECTURE

Resources Internal Connectivity [ 'ﬂ SAR Domail

aResourceRoles %
Target : Target

: Radio

[

/Operational Process Flow | @ 2. Analyze System Reguirements ]) (Operational Process Flow [ i) 3 Define Logical Architecture 1)
. \
3.A. Build operational SoS
W
modules
2.A. Review the current -
mission scenario W/
( 3.B. Define MOPs )
I
- |
2.B. Review the as-is v
architecture (" 3.C. Define logical B |
architecture of replaceable |
| modules
- | S l
\/ v | [No]
2.C. Specify blackbox ( 3.0.Build process flow | |
modules and resources diagram for ;e:;aceable |
requirements . o >
|Refine? |
| |
aRes é
Controlling Un
R \. L&

Ctrl Current Arch : Ctrl Arch

«ResourcaRoles
C2:C2 8

»
RIS Estimated regiol

n|

Fl4 Command

k.
RIZ Tafiget

«ResourceRoles %
Controller : Controller

sResourceRoles
Supervisor : Supervisor

aResourceRolkes %
co-pilot : Co-Pilot

s«ResourceRoles e
Rescuing Unit : Rescuing Unit

act Coordination

s«ResourceRoles .
Rsc Arch : Rsc Arch

# «ResourceRoles. €3
{11

RI¢ Cmmafid pachpoard
- Hand

7T
aResourceRoles % Nurse 1: Nurse 1 %
Driver : Driver

sResourceRoles %
Nurse 2 : Nurse 2

«OperationalParameters —

in Searching Area

input Receive -1 - - —
region

Send target
exact location

Decide on the
best route
Fly to the
- — — —|— region

«OperationalPerformers &
Imaging device

«0perationalPerformers =5
Data analyzer

Take images
and videos

Analyze the
B recordings

Find target
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SYNTHESIZE CANDIDATE PHYSICAL ARCHITECTURE

i

T

* The implementation matrix helps identify resources with varying LoAs that are able to implement logical entities and
their corresponding functions.
I.Eg end ) PR oo grooeeees . Resources Structure [@ LoAZ Structure ]J
I el =] i n i aResourcedrchitectures s
A Impiements =R gl -
. - @ o = - —
I | m .= = A = measurements
- 1 F I ements I:l m F' I I Ed:l E % m O _m eMeazurements suniformsAdverse Situation Coefficient : Realimax = 2.0, min = 1.0}
- = £ Do
= || C
5 ¥ m o I
o g % 23
O|<|c = e = 0 = -
rone [Erface
|:|:| CB CB CB CB e I e = Resources Structure [@ LoAJ Structure ]J
= M ements «normalzStartlpTime : Reakmean = 0.082, standardDeviation = 0.01} aleasurements snormalsMTEF : Reakimean = 150.0, standa
= D Resources Structure 5 7 5 5 ||«Measurements gnormalzSpeed : Reakmean = 45.0, standardDeviation = 5.0} aMeasurements snormalsMTTR : Reakimean = 24.0, standar e P Talochnes
e aMeazurements «normalzFuelMile : Reakimean = 0.1, ztandardDeviation = 0.01}
f J Drone 1 2 ___,.-?' ___,.-?' alfeazurements enormalzMTEF : Reakmean = 50.0, standardDeviation = 5.0} aPersons LoA3 Arch
. alfeasurements enormalsMTTR : Reakimean = 5.0, standardDeviation = 0.5} Drone Pilot 1 measurements
[: i Drone 2 2 A Va slfEasurement Algorths accuracy - Real=0.9 eMeasurements euniformsAdverse Situation Coefficient : Real{max = 2.0, min = 1.0}
- r aSystams O
L'L_. Drione 3 . A i
B! 3 measurements aF'ersans ’
E{' Urone II'ItEF'rEIEE 1 1 "';I aleasurements «normalsStartUpTime : Reakimean = 0.116, standardCeviation = 0.01} Drone Pilotz’ I:SYS?‘ O s
25 - aMeasurements «normalz=Speed : Realjmean = 60.0, standardDeviation = 5.0} - s ISon
E:_: Drone Il'ltEF'rEll:E 2 1 -"';1 aeasurements «normalzFueliMils : Reakimean = 0.15, standardDeviation = 0.02} Drone 3 Supervisor
T [ | aleasurements «ncrmalsMTBF : Reakimean = 60.0, standardDeviation = 5.0} \ - Pd
Crone Pilotl 2 ..-"’?I ..-"’?I aheasurements «normal=MTTR : Reakmean = 4.0, standardDeviation = 0.5} "* Ll = e
T «leasurements Algarithm's accuracy : Real = 0.57 eMeazurements znormalsStartUpTime : Healimean = 0.15, standardDeviation = 0.01}
. .E'. Drane Pilot2 2 J_,.?' J_,.-?' «Meazurements znormalsSpeed : Reallmean = 75.0, standardDeviation = 5.0}
eMeasurements enormalsFuelMile : Reallmean = 0.2, standardDeviation = 0.02}
- i LoAZ Arch B A A A sMeasurements snormalsMTBE : Realimean = 70.0. standardDeviation = 5.0}
ZM @I ETT i S M. modhEall = 1., =ldliud VI amp
- e LoA3 Arch o 7 A A A Two Possible alternative phySICal architectures KH psurements uniformsAnalysisTime : Real{max = 0.167, min = 0.0167}
S _ O Ranalaaie s - col_ o
- E.. SUDErvisor 1 A
(Tenhrnbw-
Interface 2

Implementation Matrix

LoA2 employs remotely operated drones and needs drone pilots.

eMeazurements enormalsMTBF . Realimean = 160.0, standardDeviation = 5.0}
«Meazurements enormalsMTTR : Reakimean = 24.0, standardDeviation = 5.0}

measurements

LoA3 is fully autonomous, and the drone provides autonomous navigation as well as image

recognition.

GEORGE MASON UNIVERSITY
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DEVELOP EXECUTABLE MODEL

par [Block] Evaluation block| 2% Parametric model ]J ;

econstraints
o4 : MOE_Calc
{MOE = (0.7*MOP1} + (0.3*MOR2)}

[] []

C geguak

MOP1 WMOP2
unqua:lln
MOPs :SoAS
wequals

c mequaq_

gconstraints
op : Operational environment m :| o :Consiramt;
=
eequak f [Ez m¥
Mzazurement . o
) anormals " [ Tekeif l:m:E!{
Meaure . U;'r
]
syst! : Constituent system 1 | |yequaly
W t Z
‘ ?ﬁrmf“m “uequaln 18 ]mcunstraintn
TPM 4 . c2: Sumz2
_r\_:| {c=a+h}
Meazurzment ;
R i :
\'|_, mﬂ]ufﬂ gconstraints
c3d: Suma2 [
syst?: Constituent system 2 secpall :| {e=a+h}
alfzzsurements M
TPM 1 &
Mzazurament
: anormals gr wequal
TPM 2

allezzuraments
MOP 1 Bﬂ

allzasurements | |
MOP 2 &

MOE

zequake

package Analysis[ |faf LoA2 evaluation ]J

MOE : MOE

alzzsurzments
MOE 52'

«SimulationConfigs 5( «Histograms ﬁ «Histograms ﬁ
LoA2 MOE Fuel 2 MOE Time 2
i SimulationConfigs tHistograms rHistograms
U= dynamic = frue dynamic = frue
WMOE Fuel 2 -E‘sls::":'*:-ps'?ls:C:ml.'I;'- 'EE'EEEP'DII.‘E'?IESC:""{I;.‘-
@M OE Time 2 represents = [(lLoA2 evaluation represents = [(HlLoAZ evaluation
animationSpeed = 95 value = F1IM DE1_.Fu:3I coé;l improvement rate | |value = F7IM Dléz.timgmprwement Rate
v Time SenesChars y TimeSenesChart s
autoStart = true annotateFailures = true annotateFailures = true
cluneR’_efergnces = false gridX = true gridX = true
executionListeners = @LOM data gridy = true gridy = true

executionTarget = ElLoA2Z evaluation
fireValueChangeEvent = true
numberOfRuns = 1000
openSimulationPane = true
runForksinParallel = true

showA ctiveStatelmages = both

silent = false

timeVariableName = "simtime”
treatAllClassifiersAsActive = true

keepOpenAfterTermination = true
linearinterpolation = true
plotColor = "#BC334E"
recordPlotDatads = CSV

keepOpenAfterTermination = true
linearinterpolation = true
plotCalor = "#BC3I34E"
recordPlotDatads = CSV

Parametric diagram

Output:

CSVExporty &
LoA2 data
G5 VExports
fileMName = "LoA2 data”
recordTime = false
writeAfTheEnd = true

i SeleriProperiesContios
SeleciPropertiesConfig

represents = [(5JLoA2 evaluation

value =

FOMOE1.Fuel cost improvement rate
EOMOE2 Time improvement Rate
FOMOES Percentage of unspent funds

Evaluation data for trade study analysis

Simulation configuration diagram

11
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OBTAINED DATASET

 The dataset contains:

* SoAS-level MOEs and MOPs
* System-level TPMs

* Measures from the operational environment

MOE Fuel MOE Awvailability MOE time MOP Control availability MOP Fuel MOP Rescue Availability MOP Search Availability MOP Time to Detect MOP Time to Rescue LoA d1.MTEF dlMTTR
1.3009 0.7226 0.9075 0.9112 21,8552 0.7975 0.9944 6.7305 14.5183 4 B3.5407 11.2597
1.8475 07421 0.9970 0.9128 20.6809 0.5236 09872 72388 17.059%2 7 90.2946 12.0128
24472 0.7411 1.1651 0.9171 7.7239 0.8170 0.9891 5.9591 13.5002 5 B5.77EL 12.5671
1.7815 0.7046 1.1778 0.9073 11.3793 07831 0.9916 B6.3652 14.8595 B B3.3677 9.9451
1.2781 07210 1.039% 0.9146 17.8002 0.7959 0.9905 L6737 14 3785 1 93.5790 9.1624
1.2947 0.7040 1.2118 0.9062 17,1680 07837 .9912 6.4611 14.3773 9 B7.8608 16.2545
4.0373 07467 1.1482 0.90%8 5.87Z1 05260 0.59936 G.29BT 14. 7848 5 103.1161 G.4781
2.3545 0.7362 1.078E 0.8077 6.2939 0.E180 0.9915 57129 13.4072 2 B7.B21% 13.9735
3.8299 0.7467 1.0749 0.9132 4.2661 0.8226 0.9940 72172 15.2926 9 94,8783 9.7105
1.8918 07217 0.8159 0.9033 9.1631 08038 0.59939 B2711 15.1421 2 a0.25449 6.1349
1.7098 0.7155 09040 0.9125 15,8540 07902 9922 6.5721 12,0259 3 191.1915 B.3018
1.7570 0.7 180 0.9268 0.BO88 19. 8828 0.BO73 09896 T.1763 15.1401 4 91.5865 E.1611

12
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EVALUATION CHALLENGE AND SOLUTION APPROACH

* Challenge: Varying LoAs with uncertain performance can lead to undesirable performance as noticeable changes in MOEs.

LoA TPM
a xample SoAS executable model

1 Legacy System (e.g., Ambulance) Fuel/Mile

Bayesian network

Operational F ic [ [2F) Operati hi ])
«Capability» © «OperationalRole» @, «System» O
C1 : Capability A 1:0p Archit R1 : Resource 1
«Measurement» L
8"—" «Measurement» I @
MOE ol o TPM 1
w MOP SOAS fl,lel «equal» «equabe «System» @)
4: consumption «equal» «equalp | Ro: Resource 2
S |:"> [ > MoE MoP TPM1
't <+ - —p- \—] «Measurement» &
1 MOE | SoAS fuel ' L] ] PM 2
«constraint» MoP ;
v ﬁi . t I —— «constraint» TPM2 2
erciency rate on1: ons_ rain Con2: C int2 (| T
7) / {MOES1/MOF} {MOP=TPM1+TPM2}

Example Autonomous
: Capabilities
Helicopter . | - |
(Legacy System) Fuel/Mile Predictive Analysis Prescriptive Analysis

,  Autonomous Drone  AI/ML Performance Navigation Impact of TPMs on undesirable | | Root causes (TPMs) of an
Type 1 accuracy emergent behaviors in MOEs undesirable emergent behavior
Autonomous Drone  AI/ML Performance Nav1gat1'0n i in MOEs
3 Tvpe 2. Image/video - ;
ype accuracy recognition Preventive strategies

* Solution approach: Employing BN to enable decision-making under uncertainty.

| Uncertainty in TPMs leads to uncertain MOPs and MOEs

GEORGE MASON UNIVERSITY 13



THE PROPOSED T&E METHOD

* Objective: Choosing the best SOAS configuration in terms of improved MOEs while considering uncertainty.

e The proposed method integrates MBSE architecture with Bayesian Networks and further improves the analysis by using
Machine Learning and optimization algorithms.

------------ - ' . \
4 “ Y 3
Cleaned Data 1 C. Identifying j_BN nodes )] E. Analyzing !
I
1 BN nodes " | SoAS ]
i —— —— 7 . . .
Sl =tutriiot == N : g ——— - B
| A. Collecting 1 Evaluation Data 1| B. Preprocessing 2
evaluation data 1 ) data : = S
‘ ------------- N — o - - Z
H _ |
g ——— \
Cleaned Data 1 D. Identifyin
partions Parame [ Oparatonahinioc > | fyl g ' BN arcs ‘\
e © | [0 A e \ \
- i Tl
waquale coquels woqual MTSpmm- : Q High 250 High
e T e - — BN structure learning N\
wconstraints |MoP U O Mz O . \
e E| _ w2 -mj algorithms. \
{MOE=1/MOP} fk:;;‘I'PMI-‘I’PM:}. 1
: such as Tabu search, K2, ... e

uuuuuuu

SoAS executable model
Bayesian network

Torkjazi, M., & Raz, A. K. (2024c¢). Predictive and Prescriptive Analyses of Autonomy Integration into the System of Systems. In A. Salado, R. Valerdi, R. Steiner, & L. Head (Eds.), The Proceedings of
the 2024 Conference on Systems Engineering Research (pp. 213-228). https://doi.org/10.1007/978-3-031-62554-1 14
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THE RESULTING BN
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PREDICTIVE ANALYSIS WITH VARYING LOAS

* The LoA 2 and LoA 3 architectures were compared in terms of improvements in mission time and fuel consumption.

* In the current design, the MOEs fall within the Very Low category (i.e., MOE Time = [0.69 0.77] and MOE Fuel =[1.04 2.33]).

Did not make a significant change
on MOE_Time but
Increased the probability of
MOE Fuel =[3.91 7.2]

Increased the probability of
MOE_Time = [0.82 0.86] and
MOE_Fuel ={2.33 3.19]

Output: Predicting potential undesirable SOAS performance
and understanding suitable LoAs
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PRESCRIPTIVE ANALYSIS WITH VARYING LOAS

Possible root causes

* Assume a scenario for the LoA 2 architecture in which an  Availability of Searching unit:
probability of 68%

undesirable emergent behavior was noticed in
MOE_Availability resulting in a value within the * Drone 1 interface MTTR:
probability of 26%

Very Low category, 1.€., [0.5 0.58].
Ty sty [ ] (longer repair time leads to lower
availability rates)

i) hen gt | BT T N Bmtyiem | W Dt _NTEF r':l v
) OfSoes | .':"'I-|_.ir|.'|'l.‘_-. werrsem P “___‘ el | e
e w2l . 2 (e Ml L i E Y |
Frees aaf Mg pinfl Medum 2% wadem =l =
s Al | e ol o e ol o o mufll ol peen
B v ] L 1 r D
el | W]
! i L] L TV = T,

S
Output: =3
Possible root causes of undesirable emergent
behaviors that help determine
preventive strategies [1 "E":‘

BN with emergence in the MOE Availability
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CONCLUSIONS

* LoAs in systems exacerbate both architecting and evaluation challenges for SOAS.

* To address the architecting challenges, we proposed a UAF-based MBSE method that

= establishes step-by-step guidance on how to begin the initial analysis, how to model the SOAS architecture, what
UAF views to build, and what outputs to deliver in each step

= produces multiple executable SOAS architectures within a single MBSE environment composed of varying LoAs
= generates evaluation data for trade study analysis.

* To address the T&E challenges, we proposed a data-driven BN-based method reinforced by ML and
optimization algorithms to provide

= predictive analysis to examine various scenarios and predict undesirable changes in MOEs, and

= prescriptive analysis to identify root causes of a possible undesirable performance and suggest preventive
strategies.

= These two analyses together help with a more informed identification of the suitable LoAs to be integrated into
the existing SoS.
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