

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND ARMAMENTS CENTER

DEVCOM AC ARTIFICIAL INTELLIGENCE (AI) AND SYSTEMS ENGINEERING (SE) PERSPECTIVES

17 SEPTEMBER 2024

UNCLASSIFIED, DISTRIBUTION A Approved for Public Release

UNCLASSIFIED

DEVCOM ARMAMENTS CENTER

MISSION

Lead innovative research and lifecycle engineering of armaments solutions.

VISION

To be the most trusted and responsive provider of pioneering armaments solutions for decisive victory. Forging the Future of Armaments

ARMAMENTS CENTER CORE COMPETENCIES

Integrated Weapon Ammo autoloaders and Systems Gun Mounts & Recoil Large Caliber Cannon	Class V Ammunition Packaging, Handling, Storage, Planning Distribution, & Transportation
MitigationDesign, Prototyping & Certification• Non-Lethal, DirectedCertificationEnergy Weapons & Target Effects• Weapons• Remote & Automated Weapon SystemsTechnology	Logistic Engineering & New Equipment Training
Munition Systems & Technologies• Gun Launched Munition Systems• Fuzing & Munition Power Systems• Non-Lethal and Scalable Munitions• Fuzing & Munition Power Systems• Non-Lethal and Scalable Munitions• Telemetry • Munition Producibility & Manufacturing Sciences• Grenades, Demolitions, Signal Flares• Countermeasure Flares / Decoys• Guidance, Navigation, and Control• Maneuver Support Munitions• Interior, Terminal & Aeroballistics• Reactive Armor	• Propellants & Propulsion Systems • Demil & Environmental • Prypotechnics • Demil & Environmental • Pyrotechnics • Munition Production Engineering

Fire Control Systems

• Embedded/Real-Time	Networked Lethality
Software	Weapon System
• Fire / Weapon Control	Assurance
Hardware & Integration	Emergency
Ballistic Data &	Management & Anti-
Products	Terrorism Systems
Prognostic /	Embedded Training for
Diagnostics	Ground Combat &
Automated Test Sets	Soldier Platforms

Enterprise Engineering & Business

- Systems Engineering & Analysis
- Quality & System Reliability Engineering
- Modeling & Simulation of Armaments
- Product and Technical Data Management
- Acquisition Support, Business Process
 Management
- Industrial Base Analysis/Obsolescence Management

Armaments Life-Cycle Engineering: Research, Development, Production, Field Support & Demilitarization

FUTURE ARMAMENTS TECHNOLOGIES OF INTEREST (SOME EXAMPLES...)

WEAPON SYSTEMS

- Attritable armament systems
- Optionally autonomous weapon systems
- Counter-UAS / swarm defense
- Remote, robotic & optionally manned systems Human Machine Integrated Formation (HMI-F)
- Signature reduction
- Non-Volume suppressive
 effects
- Adaptive terrain shaping systems

MUNITIONS

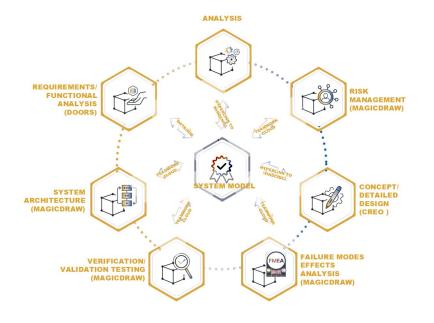
- Collaborative seeking
 munitions / submunitions
- Adaptive Countermeasures
- Agile warhead concepts
- Munition-delivered sensors / non-kinetic effects
- Multi-Domain Operations
 (MDO) / Multi-mode
 submunitions
- Dynamic re-targeting
- Assured Positioning, Navigation and Timing (PNT) for GPS denied environments
- Munition concepts for surge capacity

FIRE CONTROL

- Al-enabled / collaborative fire control
- Supervised autonomy
- Advanced ballistic algorithms
 - Photonics solutions for fire control
- Soldier aim augmentation
- Tactical data collection and processing

ENABLING

- Tunable Effects
- Contested logistics & resupply
- Alternative materials / sources / manufacturing methods
- Advanced materials / point of need manufacturing
- Modular Open Systems Approach (MOSA), digital engineering & predictive analytics
- Design for demilitarization / reduced lifecycle environmental impact

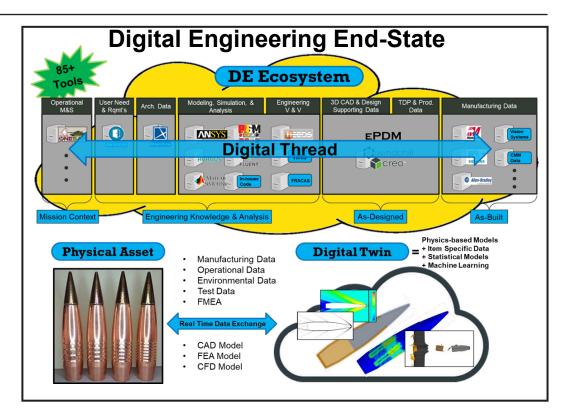


AC SYSTEMS ENGINEERING FOCUS

- Acknowledgement of the Challenge
 - How do we leverage AI-enabled capabilities to improve SE execution? (AI4SE)
 - How do we execute SE activities on AI-enabled systems? (SE4AI)
- Better Definition and Management of the "System"
 - System Model Advancements & Ontology
- Data-driven Decisions (technical and operations)
 - Statistical and Analytical Approach
 - Reinforcement Learning & Machine Learning
 - Automation
- Development of Major Strategies
 - Digital Engineering (DE)
 - Artificial Intelligence (AI)
 - Data

AC is committed to evolving with AI-enabled capabilities to improve Systems Engineering Execution Achieving Army Future Command's Goal: "...faster innovation, experimentation and demonstration"

DEVCOM AC DIGITAL ENGINEERING (DE) STRATEGY


Purpose: Transform the culture and workforce to adopt digital engineering across the lifecycle by using models to inform the enterprise and provide the authoritative source of truth.

• LOE 1: Build the Digital Foundation:

- Continue transformation from documents to models & digital data.
- LOE 2: Establish the Data Architecture:
 - Build the data infrastructure & development of Armaments
 ontology

• LOE 3: Deploy Digital Engineering Ecosystem (DEE):

- Deployment of an ecosystem to realize Digital Twin/Thread
- Enabling catalyst for use of AI to support the synthesis of data across the enterprise
- LOE 4: Grow Workforce Digital Literacy and Adoption:
 - Workforce development will be key to success of digital transformation.

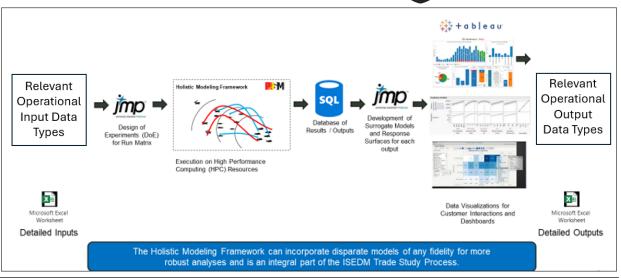
The SERC is a key partner to help realize our DE Infrastructure

DEVCOM AC ARTIFICIAL INTELLIGENCE (AI) STRATEGY

Purpose: Transform DEVCOM AC into a data-centric organization that can operationalize Artificial Intelligence

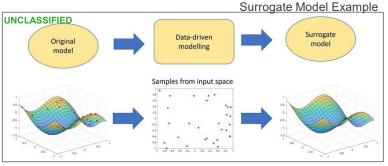
- LOE 1: AI-Enabled Armament Systems
- LOE 2: AI-Enabled Competencies & Operations:
 - Establish requisite competencies, tools, ecosystem platform and processes
 - Implementation of data strategy requirements
- LOE 3: Capabilities & Workforce Development:
 - Recruit and develop workforce with required skills
- LOE 4: Strategic Partnership:
 - Establish and maintain collaborative partnership with Government, Industry, and Academia

Holistic Effects Modeling Environment (HEME) Tool


Summary

- HEME is a holistic, probabilistic analytical tool with a modular framework developed to explore trade spaces within Army system portfolios
- HEME combines a modular, adaptable framework with modern data science approaches to result in a robust and fast tool for system engineering applications.
 - Built on the **PRISM Framework**, an in-house framework of **high-fidelity physics-based models** and an engine to drive them. PRISM is composed of high-fidelity models both internal and external to Systems Analysis Division
 - Utilizes **Design-of-Experiments and Machine Learning** approaches to produce highly effective **assessments of system performance**
- HEME enables rapid exploration of system trade spaces to help inform system requirements, down-select alternatives, and inform evolving decision maker needs

Design of Experiments Approach


- HEME utilizes **Design of Experiments** to efficiently sample **broad design spaces** for System Engineering.
- Efficient sampling practices such as the Latin Hypercube approach enables analysis of 2-5x more variables than traditional analyses, with greatly reduced runtimes.
- DOE approaches are also highly supportive of surrogate modeling and sensitivity analysis
- Through Machine Learning approaches, HEME helps determine what factors drive system performance

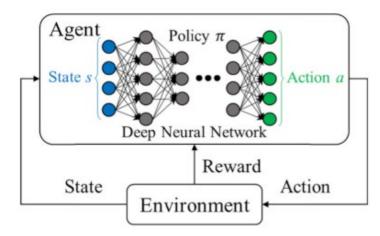
Surrogate Modeling

- Results from HEME are used to generate **surrogate models** of the data within measured confidence. Historically we have used both **general regression models**, and **neural networks** depending on the complexity of the data.
- In addition to **sensitivity analysis** and **variance measurement**, strong predictive models can be used to supplement ongoing analyses, and inform future projects.
- Strong models can determine the performance of a newly-identified system or inform the impacts of an update to a system with , with measurable confidence.

REINFORCEMENT LEARNING WITH ONESAF

Summary

- Current Operational Analyses with OneSAF are completed with multiple human-in-the-loop roles or statically planned activities.
- Applying a reinforcement learning (RL) algorithm to OneSAF will enable decreased workload on the analyst and innovative operational strategies.


Progress/Future Work

- RLSAF currently has the capability to train and employ a BLUFOR RL Agent vs an OPFOR non-RL Agent.
- Future development of RLSAF will lead to not only RL vs RL simulations, as well as multi-agent RL vs multi-agent RL simulations.

Reinforcement Learning (RL) Overview

- RL is a machine learning method in which an agent is trained within an environment and learns to interact with the environment to maximize a reward function.
- The RL agent takes the environment state variables as the input to the training policy.
- The policy is a deep neural network that tries to create a black box function to map the environment state variables (input) to the agent action variables (output) while trying to gain the most reward.
- The agent then takes an action based on the trained policy, and if those actions lead to desirable results the agent will be given a certain level of reward. The goal of the policy is to maximize the reward.

APPLYING AI/ML TO PROTOTYPING

Desired End State: Maximize machine output and minimize human tending of manufacturing cells

Enabling Technology:

- 1. Robotics
- 2. Automation
- 3. Statistical Process Control (SPC)
- 4. Artificial Intelligence & Machine Learning

Phase 1 (current):

 Develop competency in robotics and automation integration into existing manufacturing processes

Phase 2 (future):

- Augment staff by deploying automated solutions for manufacturing processes
- Integrate in-process inspection to feed data collection for SPC

Phase 3 (future):

- Utilize SPC data to teach AI/ML how a skilled operator responds to data trends
- Enable AI to make real time offsets based on SPC data

Pilot run of 2,550 clamps made with robotic machine tending

Validation of automated process simulations

AI/ML will enable extension of prototyping capacity, ensuring accuracy and minimizing downtime

PATH TO TRUSTED & ASSURED AI/ML-ENABLED PRODUCTS

Data

Assurance

System

Safety

Armaments Human System Integration (HSI)

- Development of appropriate mental models and trust metrics
- Interfaces optimized to convey the right information

Data Assurance

- Acknowledge criticality of data to AI/ML
- Identify way and means to evaluate data sets for risk and readiness for AI/ML application

System Safety

- Identify unique hazards presented by AI/ML
- Define appropriate design criteria and mitigations to ensure safety **T&E/V&V**
- Develop framework for T&E/V&V of AI/ML
- Establish procedures and measures for AI/ML performance and reliability

Reliability

- Identify potential failure modes of AI/ML
- Ensure enabling systems and sensors can meet needs

Materiel Release

- Coordinate across stakeholders to reduce risk
- Adapt and develop necessary deliverables to ensure safe/suitable/supportable

Trusted AI: Product that the warfighter trusts to deliver desired capability

Assured AI: Product can be released and fielded with confidence that it is robust and resilient after rigorous application of best practices and risk mitigation

Armaments HSI

Trusted &

Assured Al

T&E/V&V

Materiel

Release

Reliability

SE FOR TRUSTED AI

Background:

Armament systems are becoming increasingly complex through the integration of AI methods for automation and autonomy and will impact the way users interact with AI-enabled systems requiring:

- Systems engineering methods
- A robust analytic framework with supporting resources and tools
- Required domain expertise of Systems Engineers to provide solutions

Current Focus:

DEVCOM AC established a "Challenge" with the SERC to look at ways to improve Trust in AI-enabled Armament Systems. Teams
are engaged in answering the three (3) major questions:

What SE activities and artifacts are best suited to build trust in AI-enabled systems?

What infrastructure is needed to train & validate trusted Al-enabled systems?

What are workforce KSAs required to be successful in the development and management of Al-enabled systems?

Future:

- Improved SE Tools, Methods and Best Practices (TMBPs) to build Trust in AI-enabled systems
 - Appropriate level of SE based on changing Requirements/Environment as the systems learn/adopt AI/ML principles

Ongoing Joint Effort with the SERC: Trusted AI for Armaments Systems Challenge

PARTNERING THROUGH TECHNOLOGY TRANSFER

- Our most common tools:
 - Cooperative R&D Agreements (CRADAs)
 - Educational Partnerships
 - Service Agreements
 - Consortia
 - Patent Licensing
 - IR&D
 - SBIR/STTR
 - International Agreements

DEVCOM Armaments Center Transfers Technology to the Industrial Base to Speed Transition to the Warfighter

Visit our Technology Transfer Website https://ac.DEVCOM.army.mil/collaborate/

Let's continue to work together!

THANK YOU.

