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Digital Twins

Definition (2000 – today)

data

 Military Drone (Physical) System

actions

Digital Twin (Cyber)

data

data

Many Application Domains

• Virtual representation of a physical object or system that operates across the 
system lifecycle (not just front end).

• NASA, manufacturing processes, building operations, personalized medicine, 
smart cities, among others.

• Mirror implementation of physical world through real-time-monitoring and 
synchronization of data with events.

• Provide algorithms and software for observation, reasoning and physical 
systems control.

?
Required Functionality
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Project Importance and Timeliness (Why?)

Business Drivers (Why this project is timely?)

Siemens, IBM, now see Digital Twin Era as the successor to MBSE with SysML

• AI and ML will be deeply embedded in new software and algorithms.

Digital Twin Era (Business Spin)

• New methods and tools for model-centric engineering.
• New operating system environments for observation, reasoning and physical 

systems control.
• Superior levels of system performance, agility, economy, etc.

Technical Implementation (2020, Google, Apple, Amazon, Siemens, IBM … )
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Proposed Approach (Why?)

Definition of AI and ML

• AI: Knowledge representation and reasoning with ontologies and rules. 
Construction of semantic graphs, executable event-based processing, 
multi-domain reasoning.

• ML: Modern neural networks (closely related to signal processing of data 
streams). Data Mining. Input-to-output prediction, Learn structure and 
sequence. Identify objects, events, anomalies. Remember stuff.

AI/ML Strengths and Weaknesses

State-of-the-art AI and ML technologies are fragmented in their capability:

• AI provides a broad view of concepts needed for reasoning. Decision 
making processes are transparent; semantic graphs are flexible.

• Semantic reasoning is decision making in-the-moment (no memory).
• Data mining algorithms can organize information from large data sources.
• ML procedures developed to solve very specific tasks.
• ML decision making procedures lack transparency.  
• ML procedures can identify anomalies (events) in streams of data.
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Post Incubator Project (What’s New?) 

• Explore design of digital twin architectures that support AI and ML formalisms 
working side-by-side as a team.

• How to design digital twin elements and their interactions to support: (1) 
methods and tools for model-centric engineering, and (2) digital twin operating 
system environments for observation, reasoning, control.

data

 Military Drone (Physical) System

actions

Digital Twin (Cyber)

Semantic
Modeling

Machine
Learning

Knowledge Representation

DRONE OPERATING SYSTEM

Reasoning
data

Remember
Identify Objects, Events
Learn Structure and Sequence

data

Key Research Challenge

Project Success (What does it look like?)

• Knowledge to guide architectural development of future digital twins 
enabled by AI / ML technology.

Digital Twins (What’s New?)



AI4SE/SE4AI October 28 & 29, 2020 6

Post Incubator Project (What?)

Cradle-to-Grave Lifecycle Support (Digital Threads) 

Observation: A lot of model-centric engineering boils down to representation of 
systems as graphs and sequences of graph transformations punctuated by 
decision making and work / actions.

Reasonable Starting Point: Understand the range of possibilities for which 
machine learning of graphs and their attributes support and enhance activities in 
model-centric engineering and systems operation.
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• Mission objective: continuous 
surveillance

• Capability Refueling UAV
• Systems: UAV and Refueler
• Valve – Cross-domain Object
• Mechanical Domain

―Valve connects to Pipe

• Electrical Domain
―Switch opens/closes Value
―Maybe software

• Operator Domain
―Pilot remotely sends message to 

control value

• Communication Domain
―Message sent through network

• Fire control Domain
―Independent detection to shut off 

valve

• Safety Domain

Example: Cross Domain Relationships Needed for 
System Trades, Analysis and Design

Valve
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Post Incubator Project (What and How?)

relationships.
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Teaching Machines to Understand Graphs

Predictions: graph nodes and labels, dependency

• Business Drivers
• Post Incubator Project
• Real-World Considerations
• Step 1: Multi-Domain Semantic 

Modeling
• Step 2: Semantic Modeling + 

Data Mining
• Step 3: Teaching Machines to 

Understand Graphs
• Opportunities and Extensions
• Plan of Work

So what will the machine 
learning do?
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Initial Research Questions (low hanging fruit)

• What types of graphs (e.g., undirected, directed, weighted, multi-graph) are 
easy for the ML to learn?

• What can the ML do that is outside the capability of semantic modeling? And 
vice-versa?

• How can the ML improve the semantic modeling? And vice-versa?
• How to design the interactions connecting layers 1, 2 and 3
• How well do these techniques work with graph topology and attributes that are 

dynamic?
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Semantic Modeling + Machine Learning

Semantic Modeling + Machines Trained to 
Understand Graphs

Is this even possible?

What will the machine learning do?
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Post Incubator Project
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Teaching Machines to Understand Graphs

Predictions: graph nodes and labels, dependency

Observation: A lot of model-centric 
engineering boils down to representation 
of systems as graphs and sequences of 
graph transformations punctuated by 
decision making and work / actions.

Hence: Explore opportunities for training 
machines to understand graphs.

Focus on Machine Learning of Graphs and Model-Centric Engineering.

Autoencoder

encoder

decoder

minimize 

loss

[ ï2.0, 0.5, 1.0 ..... ï0.5 ] representation vector
lowerïdimensional

decompress

Input: System graph topology and attributes

Output: reconstruction of system graph

compress
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Preliminary Research  at UMD, 2020

Teaching Machines to Learn the 
Topology of Graphs
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Extract topological 
and attribute
information

Weighted 
Cross-Entropy

Loss

update

𝒁 = 𝐴𝑋𝑊

ENCODER

minimize
loss of 
information

𝑨′ = 𝜎 𝑍!𝑍

DECODER

ADAM OPTIMIZER

𝑿

𝑨

𝑾

Input Graph Output Graph

Graph Auto-Encoding Process
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Common Graph Topologies

What types of graphs can we auto-encode? 
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𝒁 = 𝐴𝑋𝑊

ENCODER

𝑨′ = 𝜎 𝑍!𝑍

DECODER

Input Graphs Output Graphs

Auto-Encoding Case Studies

Graph
No. of Embedding-Layer

Neurons Required for 
Learning

Line 2

Ring 2

Mesh 3

Star 5

Tree 3

FC 1

Mathematical 
Anomaly
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𝒁 = 𝐴𝑋𝑊

ENCODER

𝑨′ = 𝜎 𝑍!𝑍

DECODER

Input Graph Output Graph
Number of embedding layer neurons = 74
Minimum Loss = 0.00196
Input/Output isomorphism = True

Auto-Encoding an Urban Graph 
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Kind of Data? Semantics with Domain Ontology for “Full 
Stack” of Models Aligned with Reference Architecture

Example Reference Architecture 
“Full Stack”

Distribution Statement A: Approved for public release.  Distribution is unlimited.
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Future Work

Year 1: Teaching Machines to Understand Graphs

Year 2: Go Deep, Dynamic,  Broad, Hybrid

Year 3: Create Digital Twin Experience

• Teaching machines to understand small graphs having static graph topologies.
• Auto-encoder design (guarantees on system graph representation).
• Formulae for design of neural network architectures for specific types of graph.
• Explore opportunities for composition of neural network architectures.
• Identification of events via time-series anomaly detection.
• Basic mechanisms for semantic / machine learning interaction.
• Integration of simulation and machine learning.

• AI/ML architectures for digital twin experience.
• Applications.

• Deep graph neural networks / dynamic graph topologies.
• Reasoning with events, space and time. 
• Inject semantics into machine learning models.
• Applications.

Semantics

Semantic
Modeling

Machine
Learning

Experience
Provide 

Inject
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Thank You

Questions?

Contact Information

Mark Austin: austin@umd.edu
Maria Coelho: mecoelho@terpmail.umd.edu
Mark Blackburn: mblackbu@stevens.edu

mailto:austin@isr.umd.edu
mailto:mecoelho@terpmail.umd.edu
mailto:mblackbu@stevens.edu
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Semantic Modeling for Model-Centric 
Engineering

MetaïDomain Ontologies and Rules

Instances
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b

Reasoner
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Rules and Reasoner
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Ontology Ontology
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RulesRulesRulesRules
Temporal Spatial Units Currency

OntologyOntologyOntologyOntology
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Network

Network

Requirements

Requirements

Sensor

Sensor

Control

Control

Semantic Modeling and Reasoning for ModelïCentric Engineering

BuildingïBlock Ontologies and Rules

Simple Military Exercise

Decision Making / Exercise Actions

Source: Regli W., et al. 

Military exercise actions need to occur at 
the right time and in the right place.
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Multi-Domain Semantic Modeling

Multiïdomain Semantic Modeling

Data Source A

Data Source B

Ontology A

Ontology B

Rules A

Rules B

import

import visit

visit

Data Models / Sources
DomainïSpecific

Rules
Domain

design flow
Ontology classes
and properties

design flow

Domain B
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1

Events !!!Semantic Graph
Attach

Rules Engine

Revisions to semantic graph

import
import

Executable Processing of Events

Data-Ontology-Rule Footing (Work at UMD / NIST / SERC in 2017).
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Combined Semantics + Data Mining

2

Data Source A

Data Source B

Ontology A

Ontology B

Rules A

Rules B

import

import visit

visit

Data Models / Sources
DomainïSpecific

Rules
Domain

design flow
Ontology classes
and properties

design flow

Multiïdomain Semantic Modeling

ontologies
refinement ofrefinement of

rules

Machine Learning / Data Mining

Classification Clustering Association

decision tree Group A

Group B

Group A

implies

Group B

ontologies
domain

data
domain 

Domain B

Domain A

Semantic Feature Engineering

1

Work at UMD / Building Energy Group at NIST / NCI, 2018-2019

Research Question: How can semantic modeling + machine learning / data mining work 
together as a team?


