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Definition (2000 — today)

« Virtual representation of a physical object or system that operates across the
system lifecycle (not just front end).

Digital Twin (Cyber) Military Drone (Physical) System

?

Required Functionality

« Mirror implementation of physical world through real-time-monitoring and
synchronization of data with events.

« Provide algorithms and software for observation, reasoning and physical
systems control.

Many Application Domains

« NASA, manufacturing processes, building operations, personalized medicine,
smart cities, among others.
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Business Drivers (Why this project is timely?)

Siemens, IBM, now see Digital Twin Era as the successor to MBSE with SysML

Next-generation

digital twin
Digital 9
PLM Twin Era
CAx Pervasion
Model Sunrise
Pioneers Key challenges
- — Keep real and digital
worlds ‘in sync’ easily
— Close the data loop from
operations back to design
— Generate knowledge from
® ° ® doit:wbuted mods':s
i i = a - - rcome expertise-
Timeline 1985 2000 2016 limited scalabilty of use
— Scientific experts — Computer — Model-based — Combining the virtual — Apply novel simulation
use models technology aid in Systems Engineering and physical world technologies and
— Understanding of product design — Key for — Bridge value chains convergence with data
phenomena and engineering communication analytics and loT

Digital Twin Era (Business Spin)

* New methods and tools for model-centric engineering.

* New operating system environments for observation, reasoning and physical
systems control.

» Superior levels of system performance, agility, economy, etc.

Technical Implementation (2020, Google, Apple, Amazon, Siemens, IBM ... )

« Al and ML will be deeply embedded in new software and algorithms.
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Definition of Al and ML

« Al: Knowledge representation and reasoning with ontologies and rules.
Construction of semantic graphs, executable event-based processing,
multi-domain reasoning.

« ML: Modern neural networks (closely related to signal processing of data
streams). Data Mining. Input-to-output prediction, Learn structure and
sequence. Identify objects, events, anomalies. Remember stuff.

Al/ML Strengths and Weaknesses

State-of-the-art Al and ML technologies are fragmented in their capability:

» Al provides a broad view of concepts needed for reasoning. Decision
making processes are transparent; semantic graphs are flexible.

« Semantic reasoning is decision making in-the-moment (no memory).

« Data mining algorithms can organize information from large data sources.

* ML procedures developed to solve very specific tasks.

* ML decision making procedures lack transparency.

* ML procedures can identify anomalies (events) in streams of data.
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Digital Twins (What’s New?)

« Explore design of digital twin architectures that support Al and ML formalisms
working side-by-side as a team.

Digital Twin (Cyber) Military Drone (Physical) System

DRONE OPERATING SYSTEM

Learn Structure and Sequence ( . )
. . Machine

Identify Objects, Events Learning

Remember —

Key Research Challenge

« How to design digital twin elements and their interactions to support: (1)
methods and tools for model-centric engineering, and (2) digital twin operating
system environments for observation, reasoning, control.

Project Success (What does it look like?)

« Knowledge to guide architectural development of future digital twins
enabled by Al / ML technology.
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Cradle-to-Grave Lifecycle Support (Digital Threads)

Design Test Operation
; DIGITAL
Analysis Validation Management

Data storage [Data storage lData storage
T e o e e, e T R e T e R T AT R TR TS T RnTmae A

e e o D N
l — — — — : s

i I

| I

. . .. . .. . . . . . w : Machine Learning
! Digital Twin 0 Digital Twin 1 Digital Twin 2 Digital Twin 3 Digital Twin 4 Digital Twin 5

B A S R ]

feedback

Manufacturing
+

Monitoring

Observation: A lot of model-centric engineering boils down to representation of
systems as graphs and sequences of graph transformations punctuated by
decision making and work / actions.

Reasonable Starting Point: Understand the range of possibilities for which
machine learning of graphs and their attributes support and enhance activities in
model-centric engineering and systems operation.
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e Mission objective: continuous e Operator Domain
surveillance —Pilot remotely sends message to

e Capability Refueling UAV control value
e Communication Domain

—Message sent through network

e Systems: UAV and Refueler

e Valve — Cross-domain Object . _
* Fire control Domain

—Independent detection to shut off
valve

e Mechanical Domain
—Valve connects to Pipe

e Electrical Domain
—Switch opens/closes Value

e Safety Domain

—Maybe software
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Multi—domain Semantic Modeling

Domain  _ _ _ ___ _ _ _ _p»  Ontologyclasses _ _ _ _—_ _pp  Domain-Specific
Rules -----------an d properties ------ Data Models / Sources

Business Drivers L J

* Post Incubator Project

» Real-World Considerations Domin A
« Step 1: Multi-Domain Semantic |
Modeling Domin B |

- Step 2: Semantic Modeling +
Data Mining

» Step 3: Teaching Machines to >
Understand Graphs

» QOpportunities and Extensions

* Plan of Work

So what will the machine 3
learning do?
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« What types of graphs (e.g., undirected, directed, weighted, multi-graph) are
easy for the ML to learn?

« What can the ML do that is outside the capability of semantic modeling? And
vice-versa?

SEMANTIC MODELING
* Represent and retrieve knowledge

* Dynamically combine knowledge
to answer questions (backward
inference) or to draw conclusions
(forward inference)

* Provide transparency

* Reason in ways which were not

necessarily anticipated or

algorithmically specified

MACHINE LEARNING

* Review massive volumes of
data

* Discover correlations between
inputs and outputs that might
not be apparent to a human

* Perform classification,
clustering, and association
tasks

* Analysis of new data types (i.e.

audio, images or video)

* How can the ML improve the semantic modeling? And vice-versa?

* How to design the interactions connecting layers 1, 2 and 3

« How well do these techniques work with graph topology and attributes that are
dynamic?
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Semantic Modeling + Machines Trained to
Understand Graphs

Is this even possible?

What will the machine learning do?
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Focus on Machine Learning of Graphs and Model-Centric Engineering.

Multi—domain Semantic Modeling
| T Observation: A lot of model-centric

L J engineering boils down to representation
of systems as graphs and sequences of
graph transformations punctuated by
decision making and work / actions.

Rules - --------- and properties -q------ Data Models / Sources

Rules A
-
N -
N
RN
.
L
|
Rules B

refinement of refinement of ontologies ata .
Tmm Tomomgaes —l - ld machines to understand graphs.

Domain A

Domain B

Hence: Explore opportunities for training

Machine Learning / Data Mining

[ Semantic Feature Engineering ]_ Input: System graph topology and attributes
1\

21| ~~—---=-=-=-=-=-=-=-=-=-=-=-- P ittt N N
1 P L . Yoy L
, Classification : , Clustering , Association : minimize
. B ——
: decision tree : O O <= GroupA : OOOOO Group A : loss
1 Yo .00 1 |
1 : 1 o -~ 1 implies 1
1 1 N 1 |
1 O D
: . : OO O ~<&—— GrowB : : Autoencoder
: : : : OOOO GroupB 1
'

________________________________________________
compress
encoder l P

[=20.05.10 ...-05] <_|:lower—d1mf=,nswnal
representation vector

el

Output: reconstruction of system graph

N e e e e — = =

Predictions: graph nodes and labels, dependency
relationships.

Teaching Machines to Understand Graphs ¢

e

A

__________________________________
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Teaching Machines to Learn the
Topology of Graphs
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Graph Auto-Encoding Process

Input Graph

AI4SE/SE4AI

Extract topological

and attribute
information

ENCODER

7 =

AXW

update

DECODER

A=0Z"2) —

N

minimize
loss of

information

Weighted
Cross-Entropy
Loss

<

J

ADAM OPTIMIZER
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Common Graph Topologies

AI4SE/SE4AI

What types of graphs can we auto-encode?

Nk &

Ring Fully Connected

Line Tree

October 28 & 29, 2020
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W ENCODER DECODER

— S Z=AXW A=0Z"2)

No. of Embedding-Layer

(03020201020 Neurons Required for
Learning
Input Graphs Line 2 Output Graphs

Ring 2

Mesh 3 Mathematical

Anomaly

Star 5
Tree 3
FC 1
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Auto-Encoding an Urban Graph

Pump
Station

Input Graph

AI4SE/SE4AI

12.5 1

7

G100+
75
5.0 1
2.5

0.0 1

ENCODER

Z = AXW

Learning Curve

DECODER

A=0Z"2)

0 25 50 75 100
Epochs

125

150 175 200

Number of embedding layer neurons = 74
Minimum Loss = 0.00196
Input/Output isomorphism = True

Tank

, Pump
* Station
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Kind of Data? Semantics with Domain Ontology for “Full
Stack” of Models Aligned with Reference Architecture
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Year 1: Teaching Machines to Understand Graphs

« Teaching machines to understand small graphs having static graph topologies.
* Auto-encoder design (guarantees on system graph representation).

« Formulae for design of neural network architectures for specific types of graph.
« Explore opportunities for composition of neural network architectures.
 |dentification of events via time-series anomaly detection.

« Basic mechanisms for semantic / machine learning interaction.

 Integration of simulation and machine learning.

Year 2: Go Deep, Dynamic, Broad, Hybrid

Deep graph neural networks / dynamic graph topologies.

« Reasoning with events, space and time. Somantic
* Inject semantics into machine learning models. Modeling
* Applications. :
Inject Provid
. : : Semantics rovidae
Year 3: Create Digital Twin Experience T Experience

« AIl/ML architectures for digital twin experience. Machine
 Applications. Learning
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Questions?

Contact Information

Mark Austin: austin@umd.edu
Maria Coelho: mecoelho@terpmail.umd.edu
Mark Blackburn: mblackbu@stevens.edu
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Simple Military Exercise

Semantic Modeling and Reasoning for Model—Centric Engineering

Rules and Reasoner

Ontologies and Models

Engineering Model

T ®

Design Rules

Reasoner

s 7
Classes

Relationships

import

:
I
I
i
I
I
i
Properties i
I
i
I
I
i
I
I
i

System Structure

i

[

Building—Block Ontologies and Rules

b < System Behavior
Textual Requirements ‘ define O
( 7
Instances ‘6(
verify “ -
Requirement
. J
T import T IMPOTt m— Iimport

Decision Making / Exercise Actions

Military exercise actions need to occur at
the right time and in the right place.

Source: Regli W., et al.

AI4SE/SE4AI

Requirements Sensor Network Control
Ontology Ontology Ontology Ontology

Requirements Sensor Network Control

Rules Rules Rules Rules

import T IMPOTt m— Iimport
Meta—Domain Ontologies and Rules

Temporal Spatial Units Currency
Ontology Ontology Ontology Ontology
Temporal Spatial Units Currency

Rules Rules Rules Rules

October 28 & 29, 2020

22



SYSTEMS Multi-Domain Semantic Modeling

ENGINEERING

RESERARCH CENTER

Data-Ontology-Rule Footing (Work at UMD / NIST / SERC in 2017).

Multi-domain Semantic Modeling

) design flow design flow ) o
1 Domain  _ _ _ _ __ _ _ _ _ p Ontologyclasses _ _ _ — _ _ p  Domain-Specific
Rules - --------- and properties ------- Data Models / Sources

rT T T T T o T T oo T rT T T T T o T T oo T rT T T T T T T oo T oo [

| i :_I i

. : . import . Visit :
Domain A [ Rules A ]<p—/[ Ontology A | Data Source A |
[ [

| ‘L hd S / |

: R ’ | I o I

| N |

| X | K I

| L 7 N N I ./, \'\ . |

: AN A :

. I ' 1mport v ViIsit I
Domain B | [ Rules B ]4—\[ Ontology B Data Source B ] :
[ [ ! ! [ |

| : : : : !

| import
1mport

Executable Processing of Events

v

. Attach .
Rules Engine Semantic Graph Events !!!
¢

Revisions to semantic graph ?
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Work at UMD / Building Energy Group at NIST / NCI, 2018-2019

Multi—-domain Semantic Modeling

. design flow design flow . .
1 Domain  _ _ _ _ __ _ _ __ p Ontologyclasses _ _ _ —_ _ p Domain—Specific
Rules «q---------- and properties ------- Data Models / Sources
iy [t FTT T I
i :_I :_I i
. ! import ' . Visit !
Domain A : [ Rules A P Ontology A | Data Source A :
| :\ . , '\.'\ ) |
. e
| X | oK 1
1 7 N | . N |
17 N Re .
1 a N - N, |
1 ! N i 1
. | ' import !  visit |
Domain B | Rules B Ontology B | Data Source B |
I I ! l |
| | ! ! I |
______________ e ol e e — o - | e e e m D m -
domain domain
refinement of refinement of ontologies data
rules ontologies
Machine Learning / Data Mining [ Semantic Feature Engineering I
|\
21| ~——--=—=-=--= === - == —— e —— - - , mm - ————————- N
Classification Clustering Association

decision tree

O O == GroupA OO0OOOO Group A

I I
| o
I Lo
by
i 0] \\O\ © : : implies
I : I
| L
I b

Og e} - Group B

1
|
|
|
|
|
|
|
|
|
|

OOOO GroupB

Research Question: How can semantic modeling + machine learning / data mining work
together as a team?
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