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Setting

Trained to detect planes 
in Southern California

Mission to detect in 
Northern California

• Can we anticipate/detect a 
drop in performance?

• What can we do about it?
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Setting – Transfer Learning

‘Planes-net’ Case Study

• Learn to detect aircraft in 
Southern California (source) ~ 
22k images

• Transfer model to Northern 
California (target) ~ 10k images

• Performance drops significantly South-to-South

South-to-North

Using South + North

• Can we anticipate/detect a 
drop in performance?

• What can we do about it?
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Approach

• Can we anticipate/detect a drop in 
performance?
– Operating envelopes

§ using…
§ …transfer distance
§ …combinatorial coverage

• What can we do about it?
– Collect data, search model zoo
– Transfer learning

Operating Envelopes 
and Time-Dependent Systems

As a system evolves over time, it 
risks leaving its operating envelope. 
A learning system leaves its 
envelope when it fails to generalize 
to current conditions.
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Mission Scenario

Planning

Data
(Source)

After DeploymentBefore Deployment

Engineering

Mission
(Target) Detection

Incoming
Mission

Data
(Target)

Model

Envelope
+

Model

Envelope
+ Response



06-April-2020 6

Data Terminology

Labeled := images + ground truth
Unlabeled := images
Meta-data := data related to images

“No 
Plane”

+

“Luminance”, “Hue”
“Longitude, Latitude”

Unlabeled Labeled

Meta-data

Target := learning problem of interest
- Northern California Detection 

Source := related learning problem
- Southern California Detection

Source Target

Transfer Learning
Sharing knowledge 
from source to help 
learn in target, where 
source and target are 
distributed differently
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Operating Envelopes

Operating envelope := is the set of all systems to which we can generalize
In ML, ‘systems’ can be abstracted to data 𝐷 (from the learning task and meta-data 
related to it).

𝐷!
𝐷"!

𝐷""

𝐷"# 𝐷"$

𝐷"%
Operating Envelope

Inside Envelope

Outside Envelope
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Envelopes and Transfer Distance

𝐷! 𝐷"!

𝐷""

𝐷"#
𝐷"$ 𝑑 < 𝑑∗ 𝑑 > 𝑑∗

𝐷"%

From theory,
𝜖! ≤ 𝜖" + 𝑑! + 𝐶

𝜖!, 𝜖" - target and source error
𝑑! - transfer distance from source to target
𝐶 – constant term (VC-dimension, complexities, etc.)

𝑑! is fundamental
to transferability, to 
determining upper-
bound on error in 
new environments

𝑑∗ Data	𝐷! ∼ 𝑃!(𝑋!, 𝑌!)
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Learning Theoretic Bounds

Error in source 𝜖! Transfer distance 𝑑!Constant 𝐶

Ben-David, Shai, et al. "Analysis of representations for domain adaptation." Advances in neural 
information processing systems. 2007.

Turn bounds into principles
𝜖" ≤ 𝜖# + 𝑑! + 𝐶

Build empirical 
framework from 

principles

Theory-first 
approach!
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Estimating 𝑑

.  .  .

Original 
Image

Decompressed 
Image

Compressed 
Vector

(Latent Space)

VGG-16 ImageNet (Convolutional) Weights

Principal Component
Analysis

Gaussian Mixture
Modeling

Transfer Distance 
Calculations

Transfer Distance 
Method

Goal: Calculate transfer distance
Problem

• Distance metrics over images 
are difficult to interpret/explain

Solution
1. Use latent space learned by 

auto-encoder to represent 
images

2. Calculate, visualize, and 
analyze distances in latent 
space
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Estimating 𝑑∗

Initial estimation of 𝑑∗:
1. Split source into K-folds
2. Calculate pairwise 𝑑 between folds
3. Set 𝑑∗ using statistics on 𝑑 between folds

Revising 𝑑∗:
Over life cycle of learning system, revise 𝑑∗
using data from successful missions

Southern Source Images

Northern Target Images

Initial	estimate	in	terms	of	KL	divergence:
𝑑∗ = 𝑁𝑜𝑟𝑚𝑎𝑙 −11.8, 3.77

Estimate	of	distance	to	target:
𝑑! = 𝑁𝑜𝑟𝑚𝑎𝑙(−12.1, 4.39)

Component 1

C
om

po
ne

nt
 2

Component 1

C
om

po
ne

nt
 2
𝑑" > 𝑑∗
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𝑑( and 𝜖( are correlated

!𝑌 = 𝑃𝑙𝑎𝑛𝑒 !𝑌 ≠ 𝑃𝑙𝑎𝑛𝑒
𝑌 = 𝑃𝑙𝑎𝑛𝑒 −8.70 −11.08
𝑌 ≠ 𝑃𝑙𝑎𝑛𝑒 −10.10 −9.97

Table of KL 𝑑! for true-positive, true-negative, false-positive, and false-negative cases

Misclassified images have higher 𝑑! than correctly classified images

Correctly classified 
Northern planes 
share center-of-
mass with 
Southern planes

Misclassified 
Northern planes 
do not share 
center-of-mass

Higher transfer 
distance 𝑑!

→
Misclassification

There are some ‘atypical’ Northern planes w.r.t. those in the South.
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𝑑(-based Operating Envelopes

𝑁 = 𝐷! 𝑑! ≤ 𝑑∗}

• 𝑑1 - method for calculating transfer distance
• 𝑑∗ - estimation of transfer distance threshold
• 𝜖1 ∝ 𝑑1 - validate target error and transfer distance are correlated

Properties:
• Theory-based
• Classifier-agnostic
• Label-free

Next, we will show how meta-data can 
extend this learning theoretic envelope.
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Multi-Dimensional Envelopes

Meta-data describe contexts in which images collected

1) Meta-data to guide calculation of transfer distance
• Use meta-data to subset images into regions, measure 𝑑! between regions

– By statistical effect of meta-data on trained model performance
– Parts of target environment with/without representation in source

2) Meta-data to construct envelope when images not available
• Scenario: mission in near-future in new target environment
• No images à no transfer distance
• Known event parameters (look angle, biome)
• Use meta-data estimated from mission 

profile to guide model selection 
without collecting images

Rt

St Tt

Pt

Ut

Ut

Rt

Tt
Ut

St Tt
Ut

Tt

Pt

ImageID Location Rmean Gmean Bmean Hmean Smean Vmean Rvar Gvar Bvar Hvar Svar Vvar Class
0 Southern 0.791 0.773 0.708 0.137 0.107 0.791 0.008 0.008 0.010 0.001 0.002 0.008 Plane
1 Northern 0.833 0.834 0.787 0.183 0.064 0.839 0.013 0.012 0.013 0.004 0.001 0.012 Plane
2 Northern 0.854 0.816 0.772 0.185 0.103 0.854 0.010 0.009 0.014 0.063 0.001 0.010 Plane
3 Northern 0.679 0.693 0.670 0.279 0.035 0.693 0.004 0.004 0.004 0.003 0.000 0.004 Plane
4 Southern 0.801 0.745 0.679 0.089 0.154 0.801 0.004 0.005 0.006 0.000 0.001 0.004 Plane
5 Southern 0.884 0.833 0.762 0.097 0.142 0.884 0.011 0.011 0.014 0.002 0.002 0.011 Plane

Planes Metadata Columns and Raw Metadata Values
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Combinatorial Interactions in 
Meta-data

Meta-data may interact to impact performance
• Combinatorial t-way interaction: values assigned to t meta-data columns
• Computed over all ("$) combinations of columns
• Interactions present in dataset describe contexts in which model trained

Combinatorial Coverage Metric describes % of input space covered

Explainable at 3 levels of complexity
1. # or % interactions present/absent
2. Which interactions present/absent
3. Distribution of interactions

Informs Decision Making
1. Guide transfer distance computation
2. Selection of model from “model zoo”
3. Targeted minimal retraining strategy

+

Ut DtCCMt(𝐷$) = |%!||&!|

ImageID Location Rmean Gmean Bmean Hmean Smean Vmean Rvar Gvar Bvar Hvar Svar Vvar Class
0 0 2 2 2 0 0 2 0 0 0 0 0 0 1
1 1 2 2 2 0 0 2 0 0 0 0 0 0 1
2 1 2 2 2 0 0 2 0 0 0 0 0 0 1
3 1 2 1 1 0 0 1 0 0 0 0 0 0 1
4 0 2 2 1 0 0 2 0 0 0 0 0 0 1
5 0 2 2 2 0 0 2 0 0 0 0 0 0 1

Binning Scheme for Continuous Meta-data Planes Binned Metadata Values
2-way combination examples:
Rmean, Gmean
Smean, Class

2-way interaction examples:
{(Rmean, 2), (Gmean, 2)}
{(Smean, 0), (Class, 1)}

U : “universe” of meta-data
Ut : all t-way interactions possible
D : meta-data of training dataset
Dt : t-way interactions present
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CCM in Planes Sets

(Smean, 1), (Class, 1)
(Smean, 2), (Class, 1)
(Gvar, 2), (Class, 1)
(Svar, 1), (Class, 1)
(Svar, 2), (Class, 1)

𝑆𝑜𝑢𝑡ℎ𝑒𝑟𝑛 𝐶𝐶𝑀" =
60
72

= .83 𝑁𝑜𝑟𝑡ℎ𝑒𝑟𝑛 𝐶𝐶𝑀" =
67
72

= .93

(Rmean, 0), (Class, 1)
(Gmean, 0), (Class, 1)
(Bmean, 0), (Class, 1)
(Smean, 2), (Class, 1)
(Vmean, 0), (Class, 1)
(Rvar, 2), (Class, 1)

(Gvar, 2), (Class, 1)
(Bvar, 2), (Class, 1)
(Hvar, 2), (Class, 1)
(Svar, 1), (Class, 1)
(Svar, 2), (Class, 1)
(Vvar, 2), (Class, 1)

Missing 2-way label-centric interactions:

Smean=2
Class=1

Missing 2-way label-centric interactions:
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Set Difference Combinatorial 
Coverage Metric

New metric measures proportion of target set interactions not 
covered by source set

• Describes size of difference between two sets

• Small difference à sets are more similar à expect better performance

SDCCMt(𝑇$\S$) = |!! \"!||!!|

5) SDCCMt(Tt\ St) = 1

Ut

St

Tt

4) SDCCMt(Tt\ St) = 0

Ut St Tt

1) 0 < SDCCMt(Tt\ St) < 1

Ut TtSt

2) SDCCMt(Tt\ St) = 0 

Ut St =Tt

3) 0 < SDCCMt(Tt\ St) < 1

Ut TtSt
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SDCCM in Planes Sets

Smean=2
Class=1

Smean=1
Class=1

Smean=2
Class=1

(Rmean, 0), (Class, 1)
(Gmean, 0), (Class, 1)
(Bmean, 0), (Class, 1)
(Vmean, 0), (Class, 1)

(Rvar, 2), (Class, 1)
(Bvar, 2), (Class, 1)
(Hvar, 2), (Class, 1)
(Vvar, 2), (Class, 1)

2-way label centric interactions in set difference:
(Smean, 1), (Class, 1)

Most Southern interactions covered in Northern
Many Northern interactions not covered in Southern 
à SDCCM results correlate to presence/absence of 
transfer learning problem

All missing interactions have “Plane” vs. ”No Plane”
à Describe “atypical” Northern plane images in 
contexts not seen in South?

Smean=1
Class=1

𝑆𝐷𝐶𝐶𝑀"(Southern\Northern) =
1
60

= .02 𝑆𝐷𝐶𝐶𝑀"(Northern\Southern) =
8
67

= .12

Describes contexts missing from model 
à Images difficult to classify  
à Informs minimal re-training strategy

2-way label centric interactions in set difference:
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SDCCM for Targeted 
Retraining

Automatically 
Identify 

Interactions 
{x: x ∈ 𝑇#\𝑆#}

Automatically 
Identify Images 

{y ∶ x ∈ 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎(𝑦)}

Create train/test sets

Training 
set

S + {y}

Test set
T − {y}

Datasets

S T

Envelope

SDCCM5(T5\ S5) = .18 

Ut S5 T5

Datasets

S + {y} T − {y}

Envelope

SDCCM5(T5\ S5) = 0 

Ut T5S5
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SDCCM, Transfer Learning and Fine-tuning  
- AI Certification Process

Ø Operator provides desired metrics for certification in target environments–
Precision, Recall, F1-score and Accuracy

ØAI Certification Process on Planes dataset
ØStep 1 – Can pre-trained model trained on Southern California provide

desired metrics when evaluated on Northern California?
ØStep 2 - Can pre-trained model trained on Southern California plus

set difference interactions from Northern California provide desired
metrics?

ØStep 3 – Can fine tuning of the pre-trained model trained on
Southern California plus set difference interactions from Northern
California provide desired metrics?
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Transfer Learning 

Conv2d_1

Maxpooling2d_1 

Conv2d_2

Maxpooling2d_2 

Flatten 

Dense_1 

Dense_2

Dense_3

Model architectureØSplit the source dataset randomly (train-90%,
validation-10%).

ØTrain a model on the source dataset (Southern
California).

ØPrediction:
ØTake target dataset (Northern California) as

a test model.
ØThe Source task and the target task are

same, there is no need to add a classifier
layer.

ØPrediction made with the same classifier
layer.

Feature 
Extraction

Input Model Classifier 
(Image Classification) Prediction

Feature Extractor

No - Training

Source
Weights

Target dataset
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Fine Tuning

Conv2d_1

Maxpooling2d_1 

Conv2d_2

Maxpooling2d_2 

Flatten 

Dense_1 

Dense_2

Dense_3

Model architecture:

ØAccess to pre-trained network.
ØFreeze weights except the last convolutional

layer.
ØSince the source task and target task is same,

use the previous classifier layer.
ØTrain only the last convolutional layer with a low

learning rate.
ØSplit the target data set randomly (train-80%,

validation-10%, test-10%)
ØMake the prediction.

model

Training Process

Source
Weights

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Frozen Fine Tuned

Input
Classifier 

(Image Classification) Prediction

Frozen

Target dataset

Fine-tuning
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AI Certification Process

S Source dataset [Southern 
California]

T Target dataset [Northern 
California]

• Step 1: Identify the interactions in Northern
that don’t appear in Southern for t = 5 [N1 =
label centric, N2 = not label centric]. Identify
the images that contain interactions in the set
difference and add them to the Southern set
for training. Test on the remaining Northern
set.

• Step 2: Randomly select the same number of
images from the Northern set and add them to
the Southern set for training. Test on the
remaining Northern set.

• Step 3: Compare the performance between 1
and 2.

Targeted transfer leaning process

Case 1: Transfer Learning 

S and T

S and T (10/20%)

Case 2: Targeted transfer 
learning

S + N1 and T – N1

(N1 = 146)

Case 3: Fine-tuning

Fine-tuning

S + N2 and T – N2

(N2 = 157)
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Case 1: Transfer Learning Results

Source [Southern- train(90%), 
validation(10%)]
Target [Northern- test(100%)]

0.
94

0.
93

0.
93

0.
93

P R E C I S I O N  R E C A L L F 1 - S C O R E A C C U R A C Y

SCORES

TRANSFER LEARNING

• Without training on the target dataset,
we get around 93% accuracy using
transfer learning, which is 5% less than
the desired accuracy (98%).
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0.
93

0.
94

0.
94

0.
92

0.
93

0.
93

0.
92

0.
93

0.
93

0.
92

0.
93

0.
93

1 0 % 2 0 % 1 0 0 %

TARGET DATASET

TARGET DATASET VS ACCURACY
precision recall f1-score accuracy

Source [Southern- train(90%), validation(10%)]
Target [Northern- test(10/20/100%)]

Case 1: Transfer Learning with 
Varying Random Data Additions

• Since the source and target dataset/task are the same, it 
is not necessary to train the model in the target space.

• Therefore, the accuracy is not very dependent on the 
target dataset size.
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Case 2: Targeted Transfer 
Learning

Source [Southern- train(90% + N1), validation(10%)]
Target [Northern- test(100% - N1)]

0.
96

0.
96

0.
96

0.
96

0.
95

0.
95

0.
95

0.
95

P R E C I S I O N  R E C A L L F 1 - S C O R E A C C U R A C Y

SCORE

TRANSFER LEARNING (N1=146)
No-interaction Randomly

• Source (increased) – around 0.68%
• Accuracy (increased) - 2% (set 

difference label centric interactions)
• Accuracy (increased) - 1% (randomly)

• Information factor per image (no-
interaction) – 1.36*10-4

• In set difference interaction images, 
around 6.85*10-5 more information factor 
per image
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Case 2: Targeted Transfer 
Learning

Source [Southern- train(90% + N2), validation(10%)]
Target [Northern- test(100% - N2)]

• Source (increased) – around 0.74%
• Accuracy (increased) - 3% (set 

difference all interactions)
• Accuracy (increased) - 1% (randomly)

• Information factor per image (no-
interaction) – 1.9*10-4

• In set difference interactions images, 
around 1.27*10-4 more information 
factor per image

0.
97

0.
97

0.
97

0.
97

0.
95

0.
95

0.
95

0.
95

P R E C I S I O N  R E C A L L F 1 - S C O R E A C C U R A C Y

SCORE

TRANSFER LEARNING (N2 = 157)
No-interaction Randomly
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Case 3: Transfer Learning 
vs Fine-Tuning

0.
94

0.
93

0.
93

0.
93

0.
98

0.
98

0.
98

0.
98

P R E C I S I O N  R E C A L L F 1 - S C O R E A C C U R A C Y

SCORE

TRANSFER LEARNING VS FINE-TUNING
Transfer learning Fine-tuning

Source [Southern- train(90%), validation(10%)]
Target [Northern- train(80%), validation(10%), test(10%)]
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Results Summary

Ø If Operator’s desired metrics for certification in target environments–
Precision (0.97), Recall(0.97), F1-score(0.97) and Accuracy (0.97)

ØAI Certification Process on Planes dataset
ØStep 1 – Can pre-trained model trained on Southern California provide

desired metrics when evaluated on Northern California?
Precision (0.94), Recall(0.93), F1-score(0.93) and Accuracy (0.93)

ØStep 2 - Can pre-trained model trained on Southern California plus
set difference interactions from Northern California provide desired
metrics?

LC: Precision (0.96), Recall(0.96), F1-score(0.96) and Accuracy (0.96)
All: Precision (0.97), Recall(0.97), F1-score(0.97) and Accuracy (0.97)

ØStep 3 – Can fine tuning of the pre-trained model trained on Southern
California plus set difference interactions from Northern California
provide desired metrics?

Precision (0.98), Recall(0.98), F1-score(0.98) and Accuracy (0.98)
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Next Steps: Automated Transfer 
Learning

Case 1: 
Transfer 
Learning

Met
Desired 
metric?

Desired 
metrics 

for target

Case 2: 
Targeted 
Transfer 
Learning

Met
Desired 
metric?

Case 3: 
Fine-
tuning

Output

Yes

Yes

No

No

No

St
ep

 1
St

ep
 2

 a
nd

 3
St

ep
 4

Goal: Automate selection of transfer learning,
targeted transfer learning and fine-tuning
methods to meet desired metric for target
environment

Tasks: We will develop the software that will
automate the below tasks and meet the
aforementioned goal

Task 1 - Identify the interactions in Target set 
that don’t appear in source set (explore label 
centrism and non-label centrism/all).

Task 2 - Identify the images that contain 
interactions in set difference and add them to 
the source for training and test on the 
remaining on target set.

Task 3 - Develop automated fine-tuning 
strategy to meet desired matric for target.

Start

Stop

Stop
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Next Steps: Integrating Modelling 
Classifier Performance

• The two way partial 
dependence plot gives an 
indication of where we 
can make bins in a way 
that correlates to the 
classifier performance.
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Summary: Novel Contributions

• Decision making framework
– Data driven resource allocation

• Connecting measures of transferability in latent space to metadata and 
model performance
– Allows for black-box algorithm assessment
– Integration techniques for black-box methods

• Application of Combinatorial Coverage to Machine Learning
– Metadata coverage as partial descriptor for operational envelope
– Extension beyond single set w.r.t. universe to multi-set with directionality

• Fine-tuning process for
– Achieving desired metrics for target environment
– Satisfying computational resource usage and response requirements

• Policy network for fine-tuning that is 
– Model agnostic, configurable, distributed in the network
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What questions will this allow us to 
answer?

• Given a collection of models trained on various data sets – which models 
are expected to perform well in a new environment?
– Are there types of models that tend to perform well new environments?
– Are there types of models that transfer well with minimal retraining?
– What characteristics does my training data need to facilitate robust model 

performance in new operating environments?

• Can we detect when a model starts operating outside of its certified 
operating envelope?

In
cr

ea
si

ng
 E

co
no

m
ic

 Im
pa

ct• What is the best allocation of resources to ensure certification in 
new environments?
– A model exists – just use it
– Invest in ensembling or orchestration to combine benefits of 

multiple existing models
– Invest in fine tuning a training model in the target environment
– None of these will work – invest in additional data collection, 

retraining, or accept risk
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Deliverables

• Slides

• Code for each portion of analysis

• Summary Report
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Backup Slides

• Future Directions
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Future Work: Difference to 
Support Distance

• Set Difference Combinatorial Coverage and Transfer Distance
– Two metrics to describe a model’s operating envelope
– In Planes-net, both metrics identified that outlier region contained 

Northern images containing planes 

• Are they describing the same phenomena?
– Use SDCCM to identify images in set difference
– Compute transfer distance on those images
– Check for correlation

• If yes, use SDCCM to subset images for computing transfer distance

• If no, might be describing different dimensions of the envelope
– Use them together to get a more accurate description
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Future Work: Coverage 
Distribution

• Coverage is currently a binary metric: present/absent

• Distribution of coverage does more to describe contexts on which 
model trained
– Current: measure and plot distribution
– Future: develop metrics for set difference distribution/relative 

frequency, evaluate use in transfer learning 
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Future Work: Ensembling

• Multiple sources may cover different interactions in target set
– Ensembling models may be more economic than retraining any one
– Cost/Benefit in combination of sources to ensemble
– Possible approaches:

» Choose smallest number of source sets maximizing coverage of target set
» Choose sets maximizing coverage of target set while minimizing source set 

intersection

Rt

St Tt

Pt

Ut

St Tt

Ut

Rt

St Tt

Ut

St Tt

Pt

Ut
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Future Work: Adaptive Fine 
Tuning

• Approach - Develop Adaptive Fine-tuning strategy to meet 
desired metrics for target
– Identifying Pre-trained model layers that need to be fine-tuned
– Identifying pre-trained model layers whose parameters should be 

frozen (shared with the source task) during training
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Modelling Classifier Performance

• Analysis Goals:
– Identify which metadata factors are 

related to model generalization using 
the validation set

– Develop bins that will be related to 
performance on the target dataset.

• Correctness = Abs (Prediction – Class)
– Lower is better
– Allows us to see not only if the model 

classified correctly, but how confident 
the classification was.  

– In addition to incorrect classification, an 
unconfident classification indicates an 
area where the model might be 
underperforming.
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Modelling Classifier Performance



06-April-2020 42

Modelling Classifier Performance

• By modelling the 
correctness using the 
validation set using a 
flexible model without 
distributional 
assumptions, we can get 
a general very loose idea 
of how the model will 
perform on the target 
dataset.


