Artificial Intelligence Certification in Operational Environments

Oct. 29, 2020

Tyler Cody*, Stephen Adams, Peter Beling University of Virginia Erin Lanus*, Adam Edwards, Laura Freeman Virginia Tech

Sayyed Ahamed, **Sachin Shetty*** Old Dominion University

Speakers*

Mission to detect in Northern California

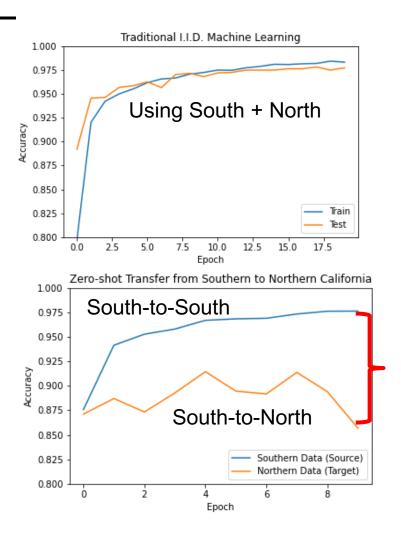
- Can we anticipate/detect a drop in performance?
- What can we do about it?

Trained to detect planes in Southern California

Setting – Transfer Learning

'Planes-net' Case Study

- Learn to detect aircraft in Southern California (source) ~ 22k images
- Transfer model to Northern California (*target*) ~ 10k images
- Performance drops significantly
- Can we anticipate/detect a drop in performance?
- What can we do about it?

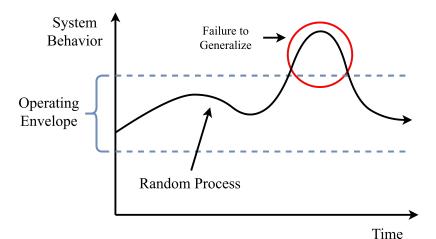


Approach

- Can we anticipate/detect a drop in performance?
 - Operating envelopes
 - using...

- ...<u>transfer distance</u>
- ...<u>combinatorial coverage</u>

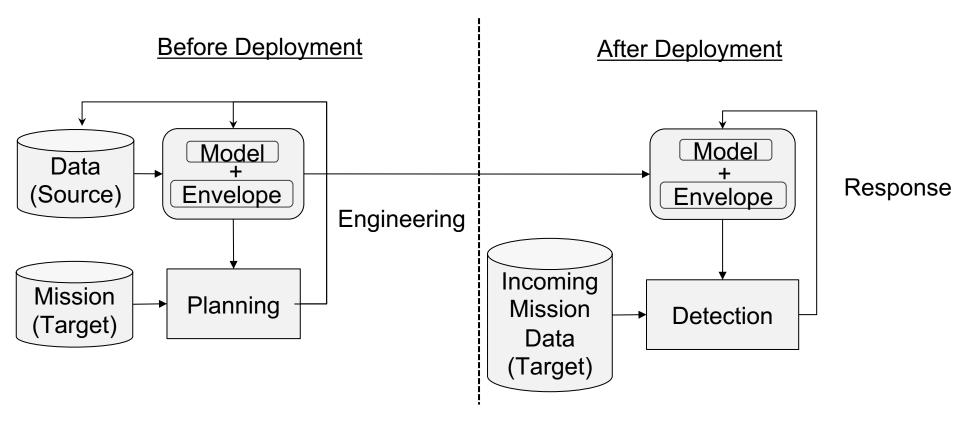
Operating Envelopes and Time-Dependent Systems



- What can we do about it?
 - Collect data, search model zoo
- **DU** <u>Transfer learning</u>

As a system evolves over time, it risks leaving its operating envelope. A learning system leaves its envelope when **it fails to generalize** to current conditions.

Mission Scenario



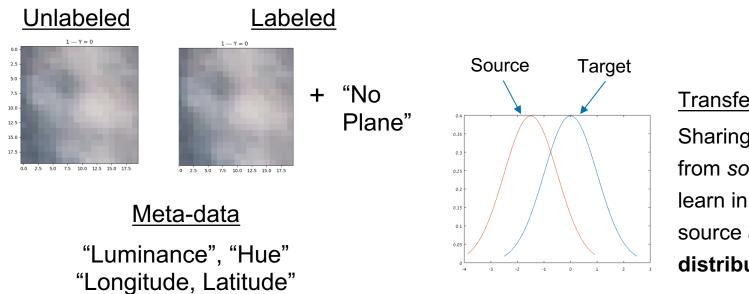
Data Terminology

Labeled := images + ground truth

Unlabeled := images

Meta-data := data related to images

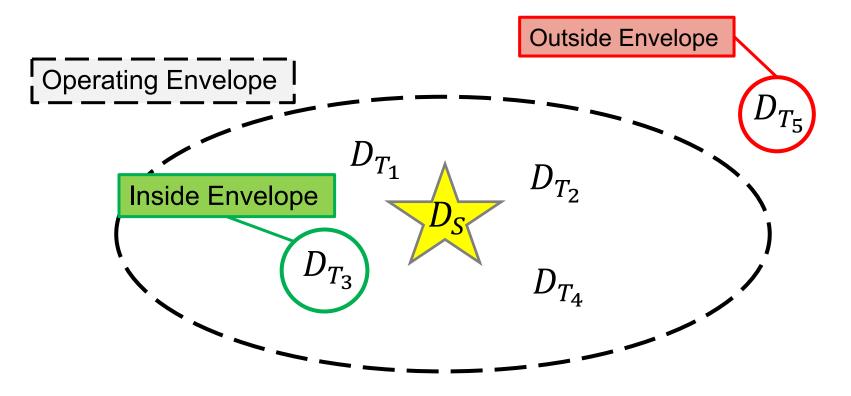
Target := learning problem of interest - Northern California Detection Source := related learning problem - Southern California Detection



Transfer Learning Sharing knowledge from *source* to help learn in *target*, where source and target are **distributed differently**

Operating envelope := is the set of all systems to which we can generalize

In ML, 'systems' can be abstracted to data *D* (from the learning task and meta-data related to it).

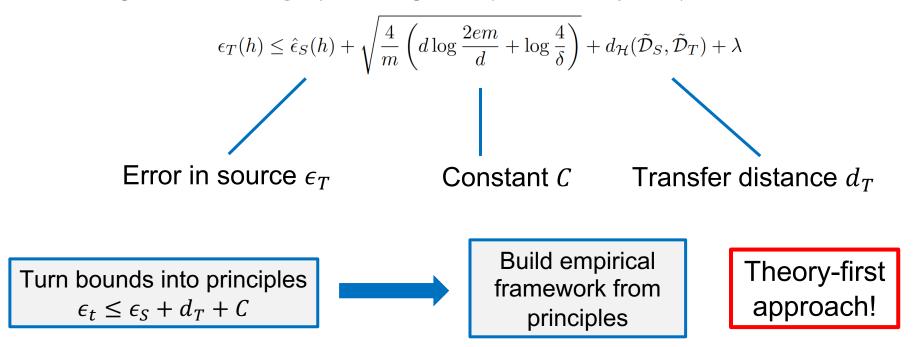


From theory, d_T is fundamental $\epsilon_T \leq \epsilon_S + d_T + C$ to transferability, to ϵ_T, ϵ_S - target and source error determining upperbound on error in d_T - transfer distance from source to target new environments C – constant term (VC-dimension, complexities, etc.) Data $D_i \sim P_i(X_i, Y_i)$ T_{5} T_{2} **′**T₃ d^* d^* d < dd >

Learning Theoretic Bounds

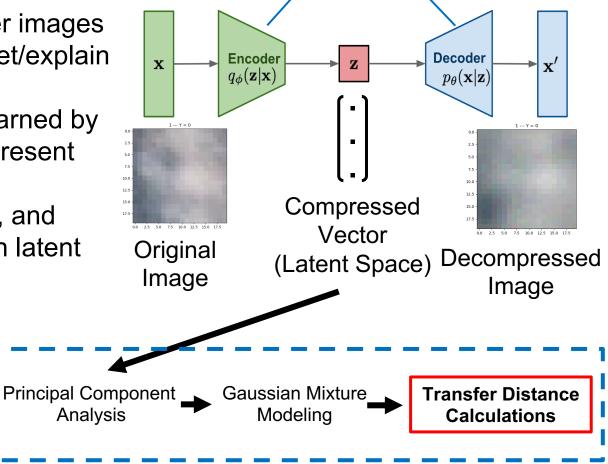
Ben-David, Shai, et al. "Analysis of representations for domain adaptation." *Advances in neural information processing systems*. 2007.

Theorem 1 Let \mathcal{R} be a fixed representation function from \mathcal{X} to \mathcal{Z} and \mathcal{H} be a hypothesis space of *VC*-dimension *d*. If a random labeled sample of size *m* is generated by applying *R* to a \mathcal{D}_S -*i*.*i*.*d*. sample labeled according to *f*, then with probability at least $1 - \delta$, for every $h \in \mathcal{H}$:



Goal: <u>Calculate transfer distance</u> *Problem*

- Distance metrics over images are difficult to interpret/explain *Solution*
 - Use latent space learned by auto-encoder to represent images
 - 2. Calculate, visualize, and analyze distances in latent space



Transfer Distance Method

Estimating d^*

Initial estimation of d^* :

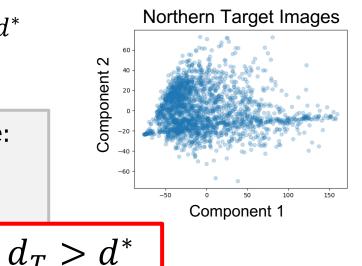
- 1. Split source into K-folds
- 2. Calculate pairwise d between folds
- 3. Set d^* using statistics on d between folds

Revising d^* :

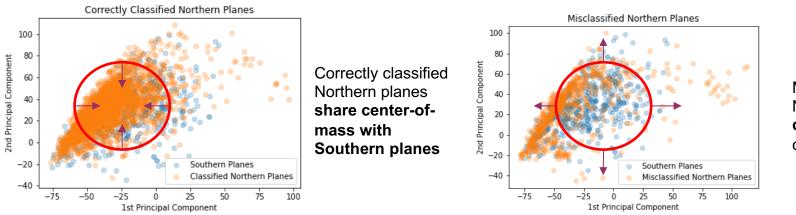
Over life cycle of learning system, revise d^* using data from successful missions

Initial estimate in terms of KL divergence: $d^* = Normal(-11.8, 3.77)$ Estimate of distance to target: $d_T = Normal(-12.1, 4.39)$

Southern Source Images



Misclassified images have higher d_T than correctly classified images



Misclassified Northern planes **do not** share center-of-mass

There are some 'atypical' Northern planes w.r.t. those in the South.

Table of KL d_T for true-positive, true-negative, false-positive, and false-negative cases

	$\hat{Y} = Plane$	$\hat{Y} \neq Plane$	Higher transfer
Y = Plane	-8.70	-11.08	distance $d_T \rightarrow$
$Y \neq Plane$	-10.10	-9.97	Misclassification

 d_T -based Operating Envelopes

$$N = \{D_T | d_T \le d^*\}$$

- d_T method for calculating transfer distance
- d^* estimation of transfer distance threshold
- $\epsilon_T \propto d_T$ validate target error and transfer distance are correlated

Properties:

- Theory-based
- Classifier-agnostic
- Label-free

Next, we will show how meta-data can extend this *learning theoretic* envelope.

Multi-Dimensional Envelopes

Meta-data describe contexts in which images collected

Planes Metadata Columns and Raw Metadata Values

ImageID	Location	Rmean	Gmean	Bmean	Hmean	Smean	Vmean	Rvar	Gvar	Bvar	Hvar	Svar	Vvar	Class
0	Southern	0.791	0.773	0.708	0.137	0.107	0.791	0.008	0.008	0.010	0.001	0.002	0.008	Plane
1	Northern	0.833	0.834	0.787	0.183	0.064	0.839	0.013	0.012	0.013	0.004	0.001	0.012	Plane
2	Northern	0.854	0.816	0.772	0.185	0.103	0.854	0.010	0.009	0.014	0.063	0.001	0.010	Plane
3	Northern	0.679	0.693	0.670	0.279	0.035	0.693	0.004	0.004	0.004	0.003	0.000	0.004	Plane
4	Southern	0.801	0.745	0.679	0.089	0.154	0.801	0.004	0.005	0.006	0.000	0.001	0.004	Plane
5	Southern	0.884	0.833	0.762	0.097	0.142	0.884	0.011	0.011	0.014	0.002	0.002	0.011	Plane

1) Meta-data to guide calculation of transfer distance

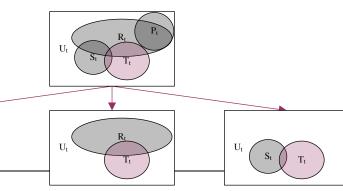
- Use meta-data to subset images into regions, measure d_T between regions
 - By statistical effect of meta-data on trained model performance
 - Parts of target environment with/without representation in source

Pt

Tt

2) Meta-data to construct envelope when images not available

- Scenario: mission in near-future in new target environment
- No images \rightarrow no transfer distance
- Known event parameters (look angle, biome)
- Use meta-data estimated from mission profile to guide model selection without collecting images



Combinatorial Interactions in Meta-data

Informs Decision Making

- 1. Guide transfer distance computation
- 2. Selection of model from "model zoo"
- 3. Targeted minimal retraining strategy

Explainable at 3 levels of complexity

- 1. # or % interactions present/absent
- 2. Which interactions present/absent
- 3. Distribution of interactions

Meta-data may interact to impact performance

- Combinatorial t-way interaction: values assigned to t meta-data columns
- Computed over all (^k_t) combinations of columns
- · Interactions present in dataset describe contexts in which model trained

Binning Scheme for Continuous Meta-data Planes Binned Metadata Values											alues			
ImageID	Location	Rmean	Gmean	Bmean	Hmean	Smean	Vmean	Rvar	Gvar	Byar	Hvar	Svar	Vvar	Class
0	0	2	2	2	0	0	2	0	0	0	0	0	0	1
1	1	2	2	2	0	0	2	0	0	0	0	0	0	1
2	1	2	2	2	0	0	2	0	0	0	0	0	0	1
3	1	2	1	1	0	0	1	0	0	0	0	0	0	1
4	0	2	2	1	0	0	2	0	0	0	0	0	0	1
5	0	2	2	2	0	0	2	0	0	0	0	0	0	1

2-way combination examples: Rmean, Gmean

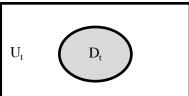
Smean, Class

2-way interaction examples: {(Rmean, 2), (Gmean, 2)} {(Smean, 0), (Class, 1)}

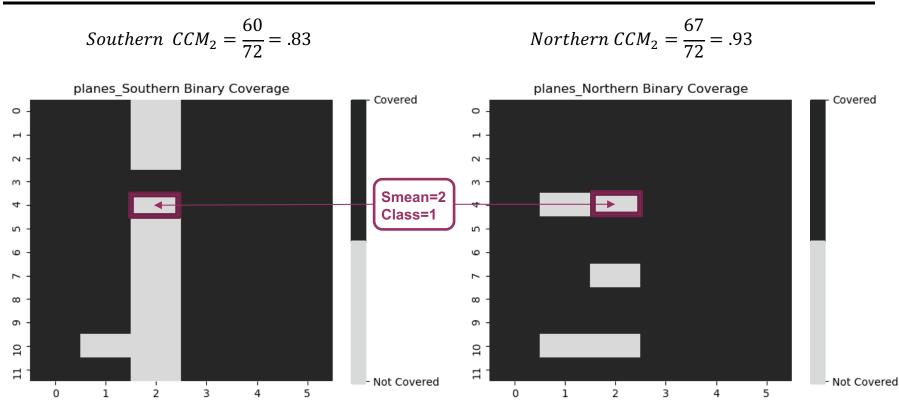
Combinatorial Coverage Metric describes % of input space covered

- U: "universe" of meta-data
- U_t : all t-way interactions possible
- D : meta-data of training dataset
- D_t: *t*-way interactions present

$$\text{CCM}_{t}(D_{t}) = \frac{|D_{t}|}{|U_{t}|}$$



CCM in Planes Sets



Missing 2-way label-centric interactions:

(Rmean, 0), (Class, 1)	(Gvar, 2), (Class, 1)
(Gmean, 0), (Class, 1)	(Bvar, 2), (Class, 1)
(Bmean, 0), (Class, 1)	(Hvar, 2), (Class, 1)
(Smean, 2), (Class, 1)	(Svar, 1), (Class, 1)
(Vmean, 0), (Class, 1)	(Svar, 2), (Class, 1)
(Rvar, 2), (Class, 1)	(Vvar, 2), (Class, 1)

Missing 2-way label-centric interactions:

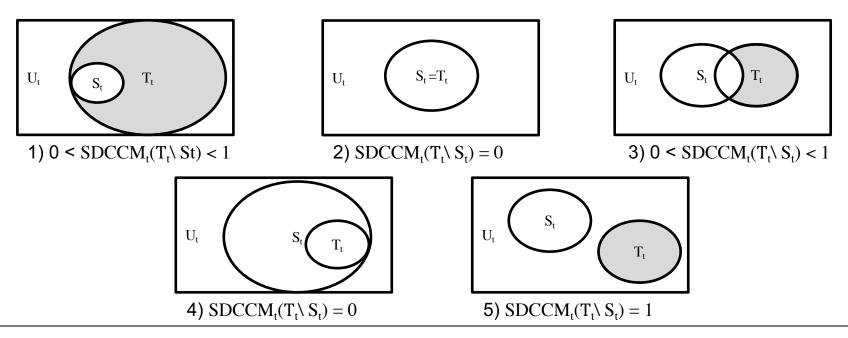
(Smean, 1), (Class, 1) (Smean, 2), (Class, 1) (Gvar, 2), (Class, 1) (Svar, 1), (Class, 1) (Svar, 2), (Class, 1)

Set Difference Combinatorial Coverage Metric

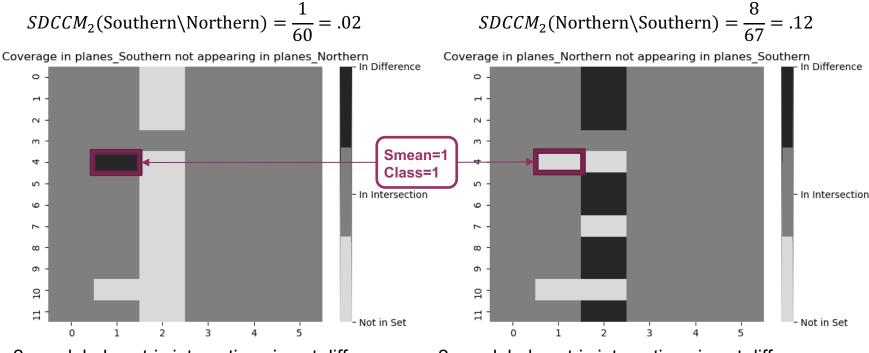
New metric measures proportion of target set interactions not covered by source set

- Describes size of difference between two sets
- Small difference \rightarrow sets are more similar \rightarrow expect better performance

$$\text{SDCCM}_{t}(T_{t} \setminus S_{t}) = \frac{|T_{t} \setminus S_{t}|}{|T_{t}|}$$



SDCCM in Planes Sets

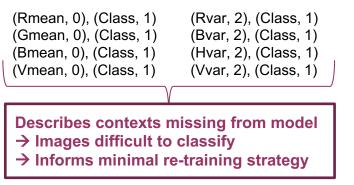


2-way label centric interactions in set difference:

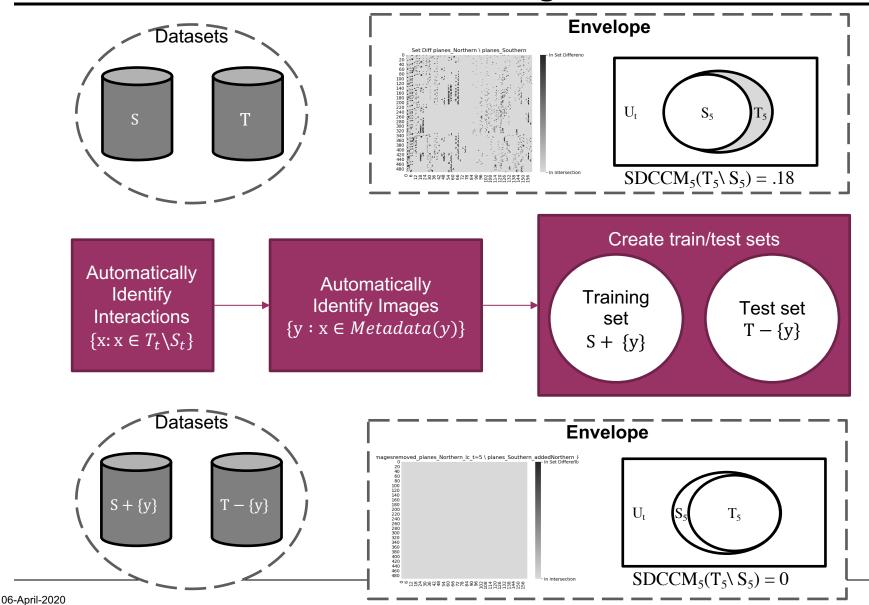
(Smean, 1), (Class, 1)

Most Southern interactions covered in Northern Many Northern interactions not covered in Southern \rightarrow SDCCM results correlate to presence/absence of transfer learning problem

All missing interactions have "Plane" vs. "No Plane" → Describe "atypical" Northern plane images in contexts not seen in South? 2-way label centric interactions in set difference:



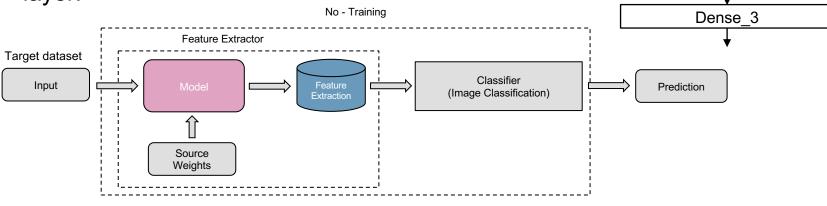
SDCCM for Targeted Retraining



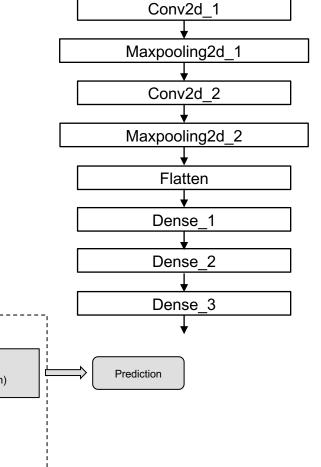
SDCCM, Transfer Learning and Fine-tuning - AI Certification Process

- Operator provides desired metrics for certification in target environments– Precision, Recall, F1-score and Accuracy
- ➢ AI Certification Process on Planes dataset
 - Step 1 Can pre-trained model trained on Southern California provide desired metrics when evaluated on Northern California?
 - Step 2 Can pre-trained model trained on Southern California plus set difference interactions from Northern California provide desired metrics?
 - Step 3 Can fine tuning of the pre-trained model trained on Southern California plus set difference interactions from Northern California provide desired metrics?

- Split the source dataset randomly (train-90%, validation-10%).
- Train a model on the source dataset (Southern California).
- ➤ Prediction:
 - Take target dataset (Northern California) as a test model.
 - The Source task and the target task are same, there is no need to add a classifier layer.
 - Prediction made with the same classifier layer.

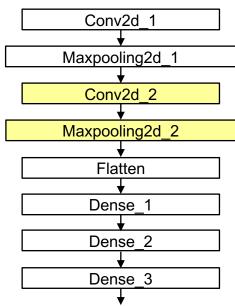


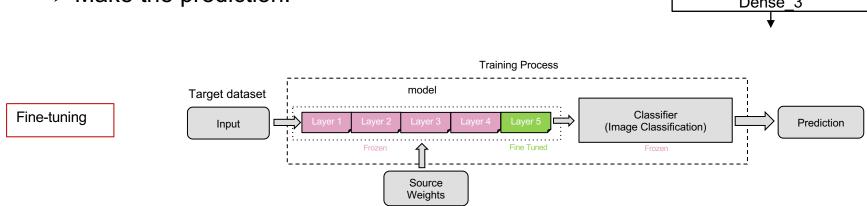
Model architecture



Fine Tuning

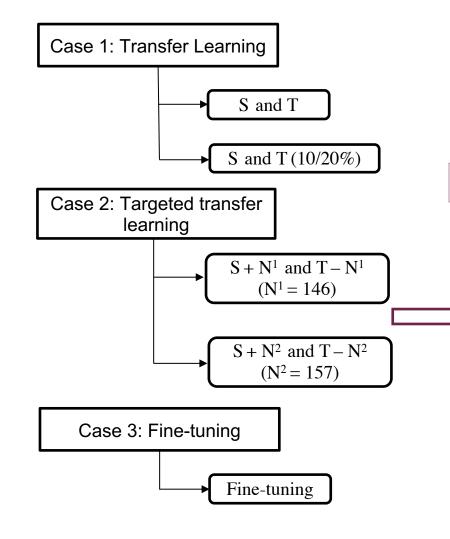
Model architecture:





- > Access to pre-trained network.
- Freeze weights except the last convolutional layer.
- Since the source task and target task is same, use the previous classifier layer.
- Train only the last convolutional layer with a low learning rate.
 - Split the target data set randomly (train-80%, validation-10%, test-10%)
 - Make the prediction.

AI Certification Process



S Source dataset [Southern California]

Target dataset [Northern California]

Targeted transfer leaning process

Т

- Step 1: Identify the interactions in Northern that don't appear in Southern for t = 5 [N¹ = label centric, N² = not label centric]. Identify the images that contain interactions in the set difference and add them to the Southern set for training. Test on the remaining Northern set.
- Step 2: Randomly select the same number of images from the Northern set and add them to the Southern set for training. Test on the remaining Northern set.
- Step 3: Compare the performance between 1 and 2.

Case 1: Transfer Learning Results

Source [Southern-train(90%), validation(10%)] Target [Northern-test(100%)]

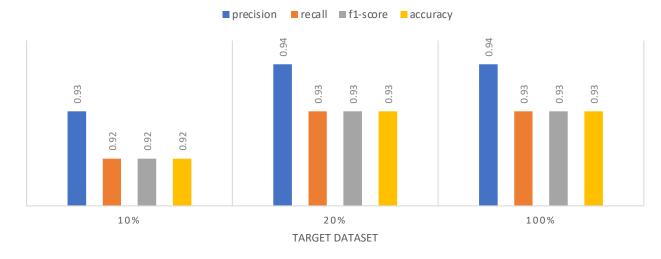
TRANSFER LEARNING

 Without training on the target dataset, we get around 93% accuracy using transfer learning, which is 5% less than the desired accuracy (98%).

Case 1: Transfer Learning with Varying Random Data Additions

Source [Southern- train(90%), validation(10%)] Target [Northern- test(10/20/100%)]

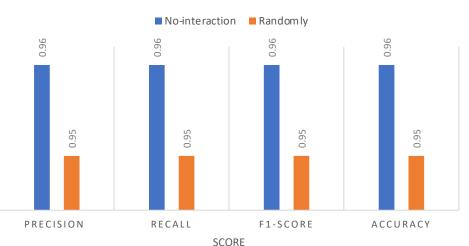
TARGET DATASET VS ACCURACY



- Since the source and target dataset/task are the same, it is not necessary to train the model in the target space.
- Therefore, the accuracy is not very dependent on the target dataset size.

Case 2: Targeted Transfer Learning

Source [Southern- train(90% + N¹), validation(10%)] Target [Northern- test(100% - N¹)]

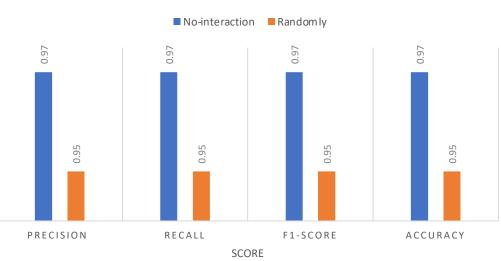


TRANSFER LEARNING (N¹=146)

- Source (increased) around 0.68%
- Accuracy (increased) 2% (set difference label centric interactions)
- Accuracy (increased) 1% (randomly)
- Information factor per image (nointeraction) – 1.36*10⁻⁴
- In set difference interaction images, around 6.85*10⁻⁵ more information factor per image

Case 2: Targeted Transfer Learning

Source [Southern- train(90% + N²), validation(10%)] Target [Northern- test(100% - N²)]



TRANSFER LEARNING (N² = 157)

- Source (increased) around 0.74%
- Accuracy (increased) 3% (set difference all interactions)
- Accuracy (increased) 1% (randomly)

- Information factor per image (nointeraction) – 1.9*10⁻⁴
- In set difference interactions images, around 1.27*10⁻⁴ more information factor per image

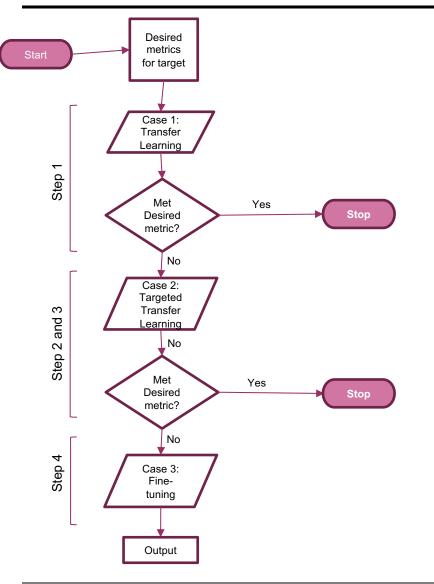
Case 3: Transfer Learning vs Fine-Tuning

Source [Southern- train(90%), validation(10%)] Target [Northern- train(80%), validation(10%), test(10%)]

TRANSFER LEARNING VS FINE-TUNING

- If Operator's desired metrics for certification in target environments– Precision (0.97), Recall(0.97), F1-score(0.97) and Accuracy (0.97)
- ➢ AI Certification Process on Planes dataset
 - Step 1 Can pre-trained model trained on Southern California provide desired metrics when evaluated on Northern California? Precision (0.94), Recall(0.93), F1-score(0.93) and Accuracy (0.93)
 - Step 2 Can pre-trained model trained on Southern California plus set difference interactions from Northern California provide desired metrics?
 - LC: Precision (0.96), Recall(0.96), F1-score(0.96) and Accuracy (0.96) All: Precision (0.97), Recall(0.97), F1-score(0.97) and Accuracy (0.97)
 - Step 3 Can fine tuning of the pre-trained model trained on Southern California plus set difference interactions from Northern California provide desired metrics?
 - **Precision (0.98), Recall(0.98), F1-score(0.98) and Accuracy (0.98)**

Next Steps: Automated Transfer Learning



Goal: Automate selection of transfer learning, targeted transfer learning and fine-tuning methods to meet desired metric for target environment

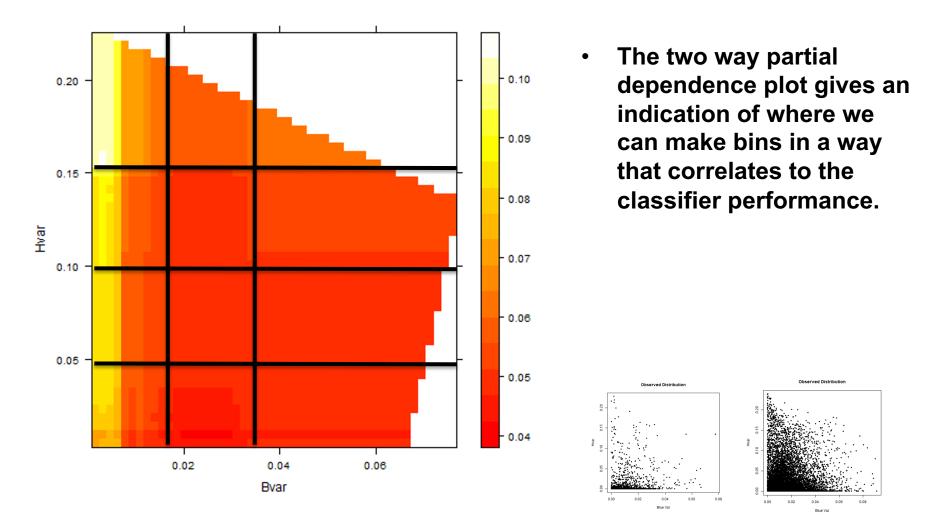
Tasks: We will develop the software that will automate the below tasks and meet the aforementioned goal

Task 1 - Identify the interactions in Target set that don't appear in source set (explore label centrism and non-label centrism/all).

Task 2 - Identify the images that contain interactions in set difference and add them to the source for training and test on the remaining on target set.

Task 3 - Develop automated fine-tuning strategy to meet desired matric for target.

Next Steps: Integrating Modelling Classifier Performance



- Decision making framework
 - Data driven resource allocation
- Connecting measures of transferability in latent space to metadata and model performance
 - Allows for black-box algorithm assessment
 - Integration techniques for black-box methods
- Application of Combinatorial Coverage to Machine Learning
 - Metadata coverage as partial descriptor for operational envelope
 - Extension beyond single set w.r.t. universe to multi-set with directionality
- Fine-tuning process for
 - Achieving desired metrics for target environment
 - Satisfying computational resource usage and response requirements
- Policy network for fine-tuning that is
 - Model agnostic, configurable, distributed in the network

What questions will this allow us to answer?

- Given a collection of models trained on various data sets which models are expected to perform well in a new environment?
 - Are there types of models that tend to perform well new environments?
 - Are there types of models that transfer well with minimal retraining?
 - What characteristics does my training data need to facilitate robust model performance in new operating environments?
- Can we detect when a model starts operating outside of its certified operating envelope?
- What is the best allocation of resources to ensure certification in new environments?
 - A model exists just use it
 - Invest in ensembling or orchestration to combine benefits of multiple existing models
 - Invest in fine tuning a training model in the target environment
 - None of these will work invest in additional data collection, retraining, or accept risk

Increasing Economic Impact

- Slides
- Code for each portion of analysis
- Summary Report

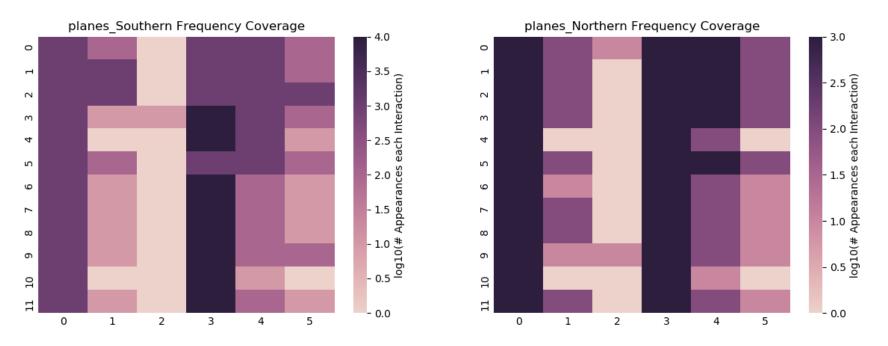
• Future Directions

Future Work: Difference to Support Distance

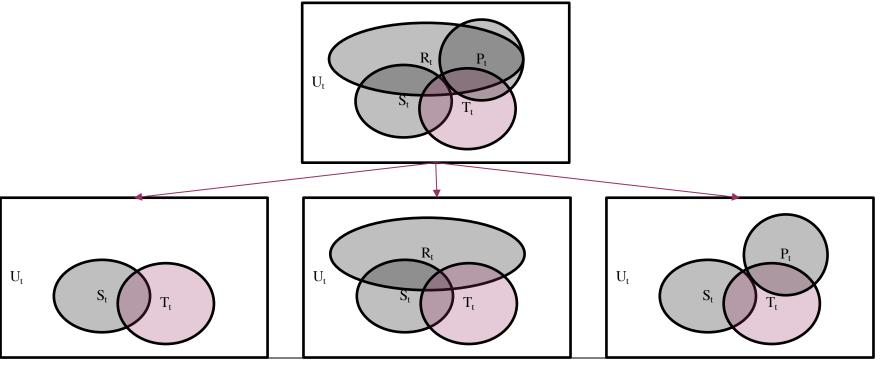
- Set Difference Combinatorial Coverage and Transfer Distance
 - Two metrics to describe a model's operating envelope
 - In Planes-net, **both metrics** identified that outlier region contained Northern images containing planes
- Are they describing the same phenomena?
 - Use SDCCM to identify images in set difference
 - Compute transfer distance on those images
 - Check for correlation
- If yes, use SDCCM to subset images for computing transfer distance
- If no, might be describing different dimensions of the envelope
 - Use them together to get a more accurate description

Future Work: Coverage Distribution

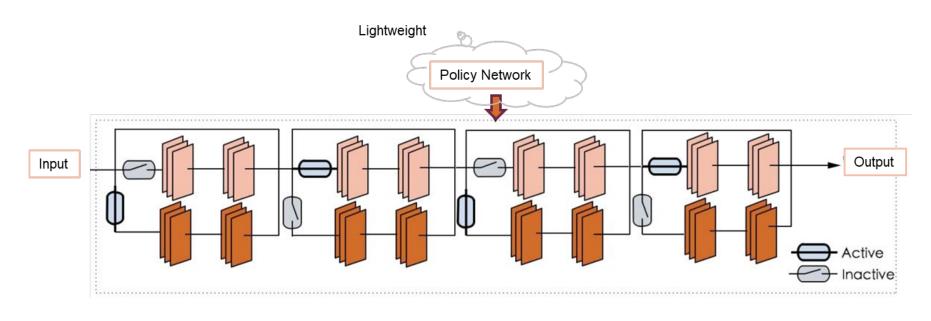
- Coverage is currently a binary metric: present/absent
- Distribution of coverage does more to describe contexts on which model trained
 - Current: measure and plot distribution
 - Future: develop metrics for set difference distribution/relative frequency, evaluate use in transfer learning



- Multiple sources may cover different interactions in target set
 - Ensembling models may be more economic than retraining any one
 - Cost/Benefit in combination of sources to ensemble
 - Possible approaches:
 - » Choose smallest number of source sets maximizing coverage of target set
 - » Choose sets maximizing coverage of target set while minimizing source set intersection



Future Work: Adaptive Fine Tuning



- Approach Develop Adaptive Fine-tuning strategy to meet desired metrics for target
 - Identifying Pre-trained model layers that need to be fine-tuned
 - Identifying pre-trained model layers whose parameters should be frozen (shared with the source task) during training

Modelling Classifier Performance

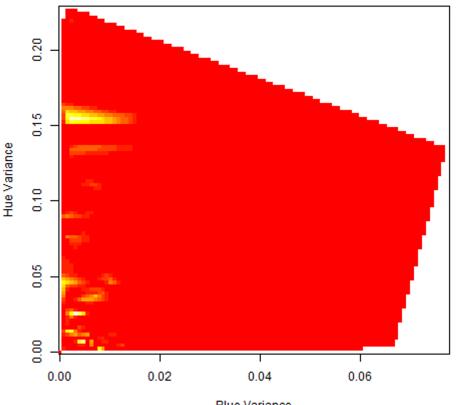
• Analysis Goals:

- Identify which metadata factors are related to model generalization using the validation set
- Develop bins that will be related to performance on the target dataset.

Correctness = Abs (Prediction – Class)

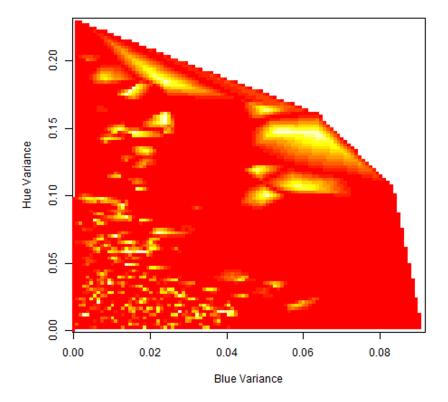
- Lower is better
- Allows us to see not only if the model classified correctly, but how confident the classification was.
- In addition to incorrect classification, ar unconfident classification indicates an area where the model might be underperforming.

Validation Correctness



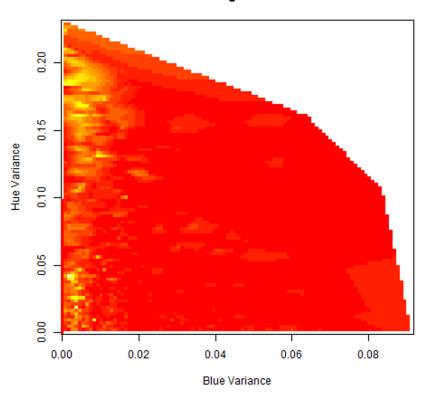
Blue Variance

Modelling Classifier Performance



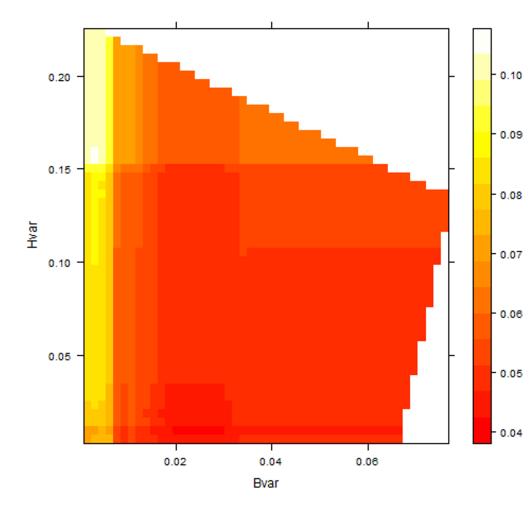
Observed Target Correctness

Predicted Target Correctness



Modelling Classifier Performance

•



By modelling the correctness using the validation set using a flexible model without distributional assumptions, we can get a general very loose idea of how the model will perform on the target dataset.

