Automated Detection of Architecture Patterns in MBSE Models

Matt Cotter (mjcotter@mitre.org)

Michael Hadjimichael (mikeh@mitre.org)

Aleksandra Markina-Khusid (amk@mitre.org)

Brian York (byork@mitre.org)

October 28-29, 2020

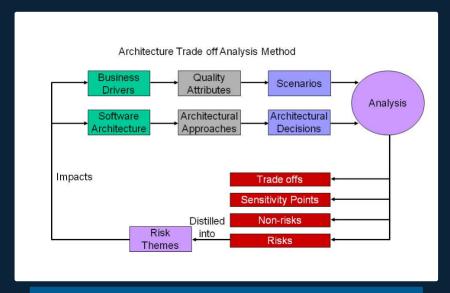
Introduction

- The evaluation of a system's architecture is an iterative, essential process within the systems engineering lifecycle, BUT...
 - 1. It is difficult to thoroughly understand, assess and evaluate a system's architecture in a consistent and objective manner
 - Even when a system architecture is formally defined using commercially available Model Based Systems Engineering (MBSE) methodologies/languages/tools
 - Non-functional architecture qualities, -ilities, are difficult to define, and quantify, in meaningful ways across domains
- This presentation provides an overview for a novel, automated, repeatable method for detecting patterns-of-interest within an MBSE model, to be exposed to help assist the systems engineer in the evaluation and improvement of said architecture

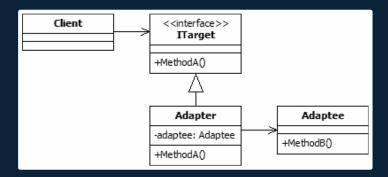
Challenge: SME-Driven/programspecific/qualitative architecture analysis

Mitigate with a combination of MBSE, design pattern literature, natural language processing, and graph theory

Some Definitions

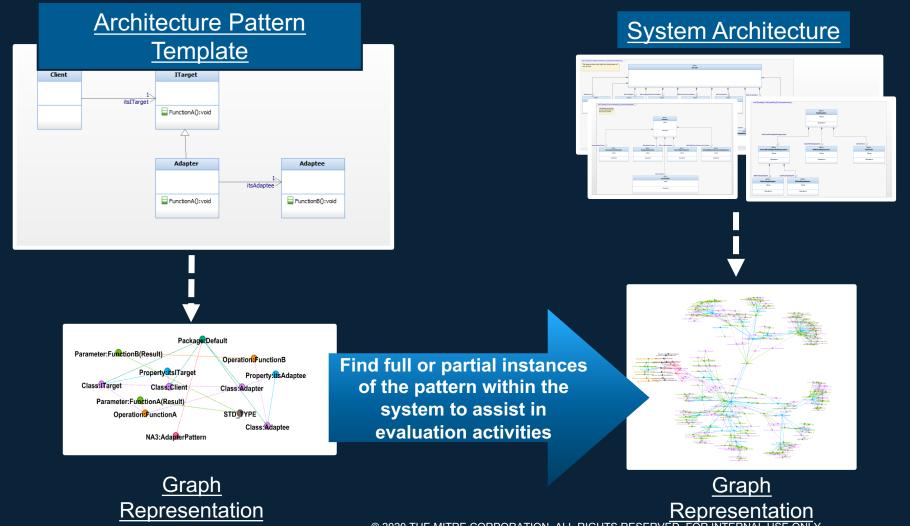

Architecture Evaluation (or Assessment): A series of activities that enable systems engineers to better understand, quantify and improve the potential for said architecture to deliver a system capable of fulfilling stakeholder requirements.

- Not just an assessment of "goodness" or "badness", but an assessment
 of whether the architecture fits the needs of the customer or aligns with
 some desired non-functional properties or requirements (e.g., –ilities).
- Most architecture evaluation activities typically use scenarios to characterize quality attributes, which can be rolled up to evaluate an architecture


Architecture (or Design) Pattern: A generalized solution to one or more common problems within a given context or domain.

- Pattern application may promote particular -ilities within such as modularity and scalability
- Provides an evaluation team with a concrete set of architectural features that align with a specific capability or requirement

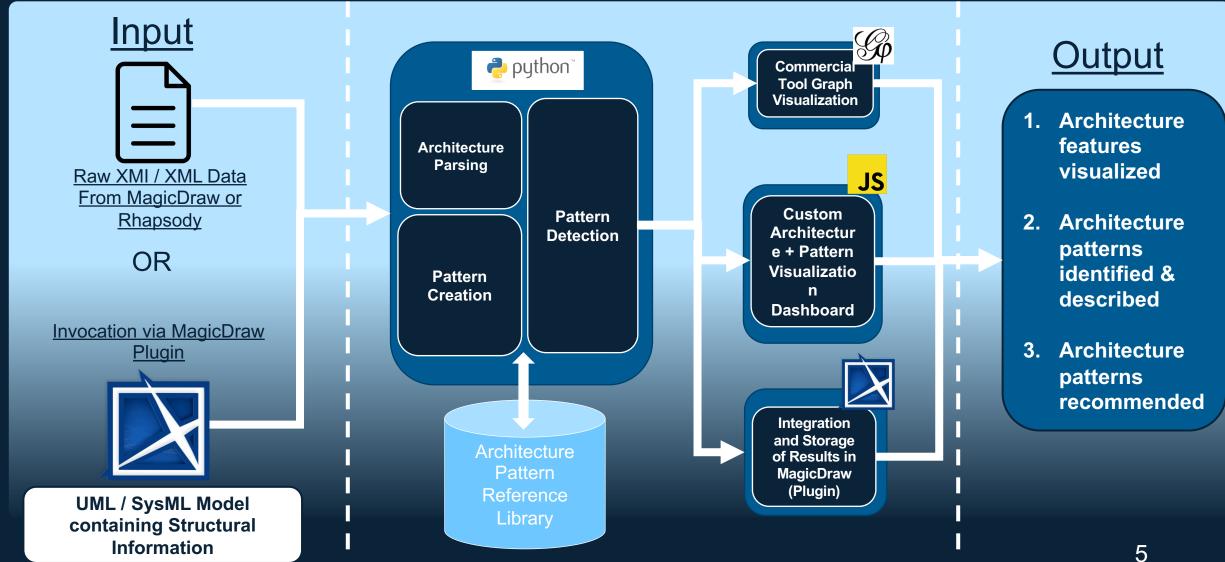
<u>Architecture (or Design) Anti-Pattern</u>: A common response to one or more common problems that is usually ineffective and introduces risk into the system



Example of an architecture evaluation method: Architecture Tradeoff Analysis Method (ATAM)

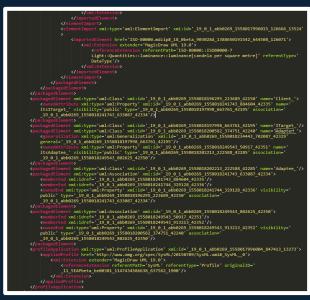
Example of an Adapter Pattern written using Unified Modeling Language (UML) Notation

Conceptual Approach



Not a replacement for existing architecture evaluation methods, but an additional tool in the SE toolbelt

© 2020 THE MITRE CORPORATION. ALL RIGHTS RESERVED. FOR INTERNAL USE ONLY


Our Implementation

Three Choices for **Analysis**

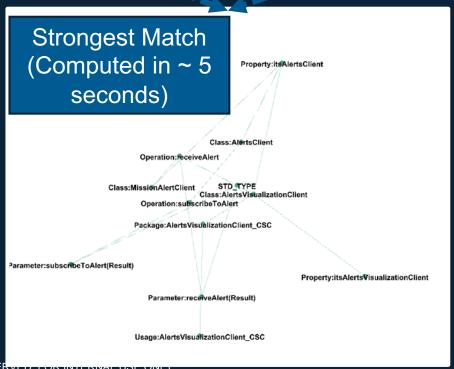

Architecture Parsing

- Defined as the process of translating text-based architecture data that has been generated from a commercially available MBSE tool into a graph-based data structure whose nose and edges correspond to a subset of elements contained within the original MBSE model
- Utilizes the ability for commercial tools to output textbased data that complies with the XML Metadata Interchange (XMI) standard, as defined by the Object Management Group (OMG).
- Initial work focused primarily on structural SysML elements instead of behavioral elements
- Separate prototypes required for Rhapsody and MagicDraw

XMI Version of Adapter Pattern In MagicDraw

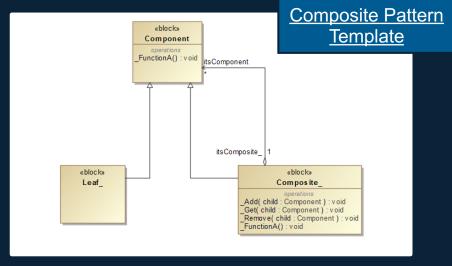
Graph Representation

Detecting Patterns

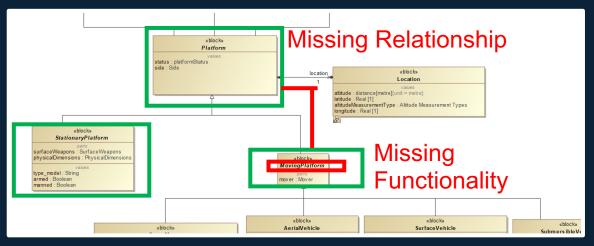

- The pattern detection module generates similarities scores comparing nodes and edges in the pattern graph (P) to one or more elements of the architecture graph (A)
- Similarity scores are generated by looking at both:
 - 1) Similarities in natural language
 - 2) Similarly typed structures
 - Based on UML2 Metamodel
- Returns a list of nodes in A such that there is a potential match to a node in P.
 - Highlights what is there, and what is missing
- Additional notes:
 - Can return N strongest results, i.e. instances of patterns
 - Each pattern is associated with a set of "synonyms" that are used to help filter the search and dramatically reduce computational cost
 - All nodes in A begin with a similarity score of 0.
 - All nodes in A are never <u>deducted</u> points for missing a mapping to a pattern, they simply receive a worse score.

Pattern Graph

Architecture Graph (7225 Nodes, 14024 Edges)


Results From Application to Mature Aircraft Government Reference Architecture (GRA)

Strongest Pattern Match Scores in Aircraft GRA



More Applications and Discussion

- Pattern detection results when applied to MITRE developed architecture models
 - 1. Generic Command and Control (C2)
 - Partial matches to composite pattern, recommend architecture modification
 - 2. Search and Rescue
 - Partial matches to adapter pattern, did not recommend architecture modification
 - 3. Joint Close Air Support (JCAS) System of Systems
 - No strong matches to any pattern in existing library (and that is OK!)
- General Lessons Learned Takeaways:
 - Two knobs to play with: similarity sensitivity and N returned results
 - Visual Inspection still required to interpret the results and make decision on whether or not to recommend a change
 - Not all system models leverage diagram types we look use in detection... future research may want to look at more of UML / SysML diagram types beyond the BDD.

Generic C2 Architecture (Highlighted Results)

Observable Benefits

Natural-Language based similarity scoring dramatically increases computational efficiency and widens the net for results

As long as you can describe a pattern, (or anti-pattern) in UML / SysML structural elements, this method is readily applicable.

Ability to handle complex, heterogenous directed graphs, with attributes. State-of-Practice Graph Classification and Link Prediction publications often with homogenous graphs and no attributes.

No Tool Plugins Required, but available for users that are comfortable

Working in a format that is easy to ingest and visualize for broader analysis capabilities.

Observable Challenges

Model size can strain commercial tool XMI generation

Full GRA Export to XMI ~ 20 min

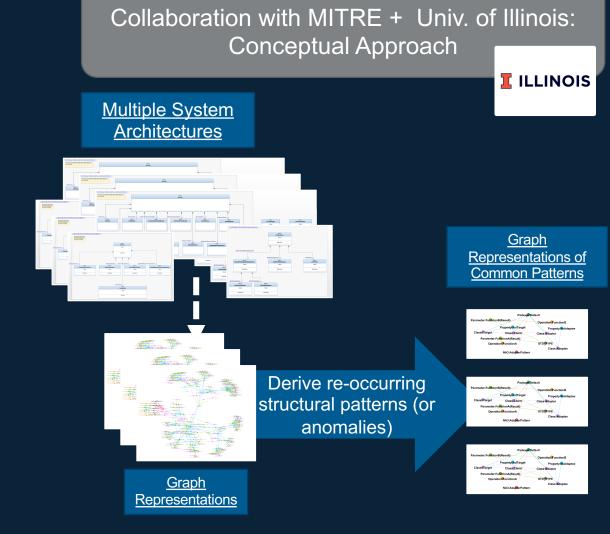
Other large models cause application to CRASH.

Pattern detection is limited by:

- 1. The modeling language's ability to describe multiplicities or optional content for elements of a pattern
 - "zero or more" and "one or more of" needed to be annotated manually on pattern templates
- 2. Our sensitivity to labels in an architecture

Architecture Patterns and Anti-Patterns are not always:

Clearly or consistently defined in literature


Well-understood or documented for a given domain or context

Conclusions

Able to successfully demonstrate the detection of patterns-of-interest in system architecture models built in several commercially available MBSE tools

Python-based pattern detection and architecture parsing being prepared for open-source release outside of MITRE

MagicDraw Plugin version of the method will continue to be developed and applied

Thank-You!

