Collaborative Functional Design Using Explainable Machine Learning (X-ML)

Lance Sherry, Jim Baldo, Brett Berlin, Oleksandra Snisarevska-Donnelly

lsherry@gmu.edu

DE 1:35 – 02:05pm Oct 29

lsherry@gmu.edu

The AI Advertising

The Reality

The Solution:

Collaborative Functional Design Using Explainable Machine Learning (X-ML)

Complete the Design

Center for Air Transportation Systems Research at George Mason University

Table of Contents

- 1. Operationally Embedded Control Systems (OECS)
- 2. Design and Testing for OECS
- 3. Machine Learning for OECS
- 4. Case Studies
- 5. Research Objective
- 6. Collaborative Functional Design Using X-ML

- Embedded on vehicle or plant
- Provide Guidance and Control functions to perform Mission
- Complex
 - Over 200 input signals
 - Over 10 actuator command outputs

- Operationally embedded control systems are widely used:
 - military applications
 - vehicle guidance and control
 - robot manipulation
 - mission planning
 - health diagnosis

- functional behavior of a typical military operationally embedded control system is complex
 - over 200 input signals
 - 10 outputs actuator commands
- Many applications require operational reliability of at least five-nines for "airworthiness" approval
 - Interpretable:
 - System Description Documents
 - Training Manuals
 - Operator User-interfaces
 - Executable
 - Certifiable (e.g. DO-178)

Table of Contents

- 1. Operationally Embedded Control Systems (OECS)
- 2. Design and Testing for OECS
- 3. Machine Learning for OECS
- 4. Case Studies
- 5. Research Objective
- 6. Collaborative Functional Design Using X-ML

- Traditional System Engineering practice:
 - specifies the functional requirements for the operationally embedded control systems
 - a manual engineering process
 - engineers collaborate with operators to define what the automation should do at all times.
- Specifications take the form of functional descriptions of behavior
 - map inputs representing the state of the operational environment to outputs (commands to actuators or guidance/alerts on displays)
- Functional behavior requirements can be specified using several modeling language constructs including combinations of:
 - "shall" requirements
 - Action Diagrams
 - Functional Flow Block Diagrams
 - state-charts, logic diagrams
 - control law diagrams
- When the modeling construct is executable it can be used to:
 - automatically generate code
 - provide verification by analysis of the design

- Traditional System Engineering practice:
 - specifies the functional requirements for the operationally embedded control systems
 - a manual engineering process
 - engineers collaborate with operators to define what the automation should do at all times.
- Time consuming
 - 1-2 years in design, coding and testing
- Subject to errors
 - Three Design Error Archetypes
 - 1. Fail to cover situations that can occur in operations
 - 1. Missing input
 - 2. Missing combination of input/states
 - 2. Fail to specify the appropriate behavior to situations that can occur in operations.

Table of Contents

- 1. Operationally Embedded Control Systems (OECS)
- 2. Design and Testing for OECS
- 3. Machine Learning for OECS
- 4. Case Studies
- 5. Research Objective
- 6. Collaborative Functional Design Using X-ML

Machine Learning for OECS

- Generate functions with complex behaviors
 - 1. Process massive amounts of data (input: output pairs)
 - 2. Supervised Learning
 - 3. Test
 - 4. Deploy
- Capture complex behavior with little/no engineering effort
- Potential to significantly reduce development time!
- Can this potential be fulfilled? What are the limitations

Machine Learning for OECS

- AI/ML technologies provide **potential** to develop and field functions
 - Increased complex functional behavior
 - Lower Development costs and time
 - Safer (through increased complex functional behavior)
 - Better than humans?

• Can this potential be fulfilled? What are the limitations

Table of Contents

- 1. Operationally Embedded Control Systems (OECS)
- 2. Design and Testing for OECS
- 3. Machine Learning for OECS
- 4. Case Studies
- 5. Research Objective
- 6. Collaborative Functional Design Using X-ML

Case Study: ACAS

Doc 9863 AN/461	S. OACI-MANO
Airborne Colli Avoidance Sys (ACAS) Manua	sion stem al
Approved by the Secretary General and published under his authority	
First Edition — 2006 International Civil Aviation Organi	zation

- Decision logic
- Finite "collision geometry design-space"
- Each "collision geometry" has defined response

Case Study: HSCT – VNAV G&CF

- NASA High Speed Civil Transport (HSCT) Flight Management System (FMS)
 - HSCT FMS is based on MD-11 FMS
- Generated FOQA data from simulation flights
 - ~18,000 "Guidance and Control" scenarios
 - Scenarios included rare-events (e.g. Engine-out)
 - Data had to balanced to increase frequency of rare-event situations
 - ~ 26,000 "Guidance and Control" scenarios

Case Study: X-ML Model Accuracy Parameters

Confusion matrix:

Precision:	[1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1. 1	•]		
Recall: [1	. 1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.]			
Fscore: [1	. 1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.]			
Support: [220	167	193	8 18	33 2	203	230	5 1 9	95 3	187	19	9 210	206	195	208
Train Accu	racy	: 1	.0												
Test Accuracy: 1.0															

but ...

- VNAV and ACAS were "missing" Behavior
- 1. Missing Situations
 - 1. Missing Inputs
 - 2. Missing Input/State combinations
- 2. Missing Situation-Behavior Mapping

[[2	20	0	0	0	0	0	0	0	0	0	0	0	0]	
[0	167	0	0	0	0	0	Ν		<u>[vn</u>	۵I	or	II Fr	rors
[0	0	193	0	0	0	0			Y P	CI			1013
[0	0	0	183	0	0	0	0	0	0	0	0	0]	
[0	0	0	0	203	0	0	0	0	0	0	0	0]	
[0	0	0	0	0	236	0	0	0	0	0	0	0]	
[0	0	0	0	0	0	195	0	0	0	0	0	0]	
[0	0	0	0	0	0	0	187	0	0	0	0	0]	
[0	0	0	0	0	0	0	0	199	0	0	0	0]	
[0	0	0	0	0	0	0	0	0	210	0	0	0]	
[0	0	0	0	0	0	0	0	0	0	206	0	0]	
[0	0	0	0	0	0	0	0	0	0	0	195	0]	
ſ	0	0	0	0	0	0	0	0	0	0	0	0	20811	

What are the Gaps in X-ML Designs?

• X-ML Design is Missing Input

 Design is *absent one or more of the required inputs* (i.e. sensors/data feeds) to identify one or more of the operational situations that must be covered by the operationally embedded system

X-ML is Missing Input/State Combinations

- Given all the required inputs, the design is *absent one or more combinations of input states* to respond to *all* the operational situations that must be covered by the operationally embedded system
- X-ML is Missing Mapping between Input/State Combinations to Behaviors
 - Given the required inputs to support all the combinations of input states and all the combinations of input states, the design is *absent one or more the correct mappings* between operational situations and appropriate behaviors

Table of Contents

- 1. Operationally Embedded Control Systems (OECS)
- 2. Design and Testing for OECS
- 3. Machine Learning for OECS
- 4. Case Studies
- 5. Research Objective
- 6. Collaborative Functional Design Using X-ML

Research Objectives

- Demonstrate development of DO-178 certifiable Operationally Embedded Control System
 - Explainable Machine Learning
 - Model must be:
 - Interpretable
 - Executable
 - Compatible with existing airworthiness certification standards

Table of Contents

- 1. Operationally Embedded Control Systems (OECS)
- 2. Design and Testing for OECS
- 3. Machine Learning for OECS
- 4. Case Studies
- 5. Research Objective
- 6. Collaborative Functional Design Using X-ML

X-ML OECS Method

- Exploit "natural" architecture of Guidance and Control Systems to generate X-ML algorithms
 - X-ML algorithms can be:
 - converted to functional behavior models
 - mapped to situation/intent/behavior modes

Example OECS: Vehicle Guidance and Control Function

Example OECS: Vehicle Guidance and Control Function

G&CF (Inputs, Outputs)	Fixed Wing	Automobile
Input: 4-D Planned Route	 "Flight plan" 4-D Navigation Procedures Air Traffic Control Traffic avoidance Terrain avoidance Env. – Windshear 	 "Route" 4-D Roadway Rules Signage and Traffic Lights Traffic avoidance Terrain avoidance Env. – surface conditions, visibility
Output: Commands	 Elevator Aileron Rudder Thrust 	Accelerator/BrakeSteering

Example OECS: Vehicle Guidance and Control Function

• Three components:

- 1. <u>Control Laws</u>
 - Closed-loop control laws (continuous mathematics)
 - Designed based on models of vehicle and actuator dynamics
- 2. Decision-making for Targets and Control Modes
 - Decision (logic)
 - Designed based on:
 - Closed-loop control law operational boundaries
 - Vehicle performance operational limits
 - Mission operational rules and constraints
- 3. Interpretation
 - Translate sensor/user-interface input data into operationally meaningful mission data

< 10% of the functional behavior

Decision-making (DM) for Targets and Control Modes (T&CM)

- Inputs to DM-T&CM
 - Inputs (States)
 - Examples
 - Landing Gear (Up, Down)
 - Flightphase (Taxi, Takeoff, Climb, Cruise ,.)
 - Aircraft Altitude (< Ref Alt 250 ft, Between Ref Alt -250 ft and Ref Alt + 250 ft, > Ref Alt + 250 ft)
 - ~ 150 inputs (Avg 3 states)
- Outputs from DM-T&CM
 - Targets for Altitude, Airspeed, Vertical Speed
 - Control Mode

Formalism for Capturing DM for T&MC

- Situation-Goal-Behavior (SGB) Tables
- Properties of SGB Table
 - Formal model
 - Executable
 - Analyzable (e.g. logical inconsistencies)
 - Captures "Operations" from Operators Perspectives
 - What is doing now?
 - Goal
 - Behavior
 - Why is it doing that?
 - Situations

Goals	1	Airmass	Descent	Late	Descent	Descent Path	Overspeed
Inputs	Situations/ Input States	Aircraft is Descending (without both Prof and FMS Speeds)	Aircraft is descendin g early of D/A Path and Prof/FMS	A/C is level late of the D/A Path	Aircraft is descending late of D/A Path and Prof/FMS speed	Aircraft exceeds speed tolerance while descending	Aircraft is level with a speed that exceeds the speed tolerance
			speed engaged	level at the ref. Alt and the ref. alt	engaged	on D/A path	when ref. Alt is lowered and a/c captures D/A path
VG Type	VNAV /Prof			1	1	1	1
Altitude	Airmass – VNAV/Prof	1	1				
	Airmass - AFS						
Aircraft Altitude	Above distance Referenced D/A path				1		
	below distance Referenced D/A path						
Aircraft Speed	Overspeed for D/A path					1	1
	Within speed tolerance for D/A path	1	1	1	1		
Aircraft Altitude	Within D/A Path capture region						
	Not Within D/A Path capture region	1	1	1	1		
Reference	Has not changed						
Altitude	Has changed		1	1			1
Behaviors		Airmass Descent to the D/A path D/A path speed	Referenced recapture using the descent profile	Airmass Descent the D/A the late profile	Referenced to recapture path using descent speed	Airmass Descent D/A path path descent	Referenced around the at the D/A speed profile
Altitude	M:Climb/Cruise						
Target	M:Descent/App roach	Descent/ Altitude	Approach Target	Descent/ Altitude	ApproachTar get	Descent/ Altitude	ApproachTarg et
Speed	M:Late descent			Late Speed	Descent Target		
Target	M: Descent/Approach					Descent/ Speed	Approach Target
	M: Airmass Descent	Airmass Speed	Descent Target				
	P: engine-out						
Speed/	P: THRUST HOLD						

Situation-Goal-Behavior (SGB) Model for Op Embedded Control System

How to read an SGB:

- Inputs
- Input/States
- Outputs
- Output/Functions
- Situations (combinations of Input States)
- Behavior (combinations of Functions)

Goals		Airmass	Descent	Late	Descent	Descent Path	Overspeed
Inputs	Situations/	Aircraft is	Aircraft is	A/C is	Aircraft is	Aircraft	Aircraft is
	Input States	Descending	descendin	level	descending	exceeds	level with a
		(without	g early of	late of	late of D/A	speed	speed that
		both Prof	D/A Path	the	Path and	tolerance	exceeds the
		and FMS	and	D/A	Prof/FMS	while	speed
		Speeds)	Prof/FMS	Path	speed	descending	tolerance
			speed	level at	engaged	on D/A path	when ref. Alt
			engaged	the ref.			is lowered
				Alt and			and a/c
				the ref.			captures D/A
				alt			path
VG Type	VNAV /Prof			1	1	1	1
Altitude	Airmass –	1	1				
	VNAV/Prof		H				
	Airmass - AFS						
Aircraft	Above distance			Situs	ation =		
Altitude	Referenced D/A			Jitut			
	path				منعممناها		
	below distance			COLL	DINALIC		
	Referenced D/A				-		
	path			Innu			
Aircraft	Overspeed for			шрч	1		
Speed	D/A path	1	1	1	1		<u> </u>
	Within speed	1	1		1		
	tolerance for						
A	D/A path						
Aircraft	Within D/A						
Altitude	Path capture						
	Not Within D/A	1	1	1	1		
	Path capture	1	1		1		
	radion						
Reference	Has not changed						
Altitude	Has changed		1	1			1
Annuac	Thas changed		1	1			1
Behaviors		Airmass	Referenced	Airmass	Referenced	Airmass	Referenced
		Descent to	recapture	Descent	to recapture	Descent D/A	around the at the D/A speed
		D/A path	descent	the late	descent speed	descent	profile
		speed	profile	uie iute	descent speed	descent	profile
Altitude	M:Climb/Cruise			Doh	wior -		
Target	M:Descent/App	Descent/	Approach	DEIIC			roachTarg
	roach	Altitude	arget	<u> </u>	1	C	
Speed	M:Late descent			Com	binatio	on of	
-							
Target	M:			Fund	tions		roach
_	Descent/Approach			iunt			et
	M: Airmass	Airmass	Descent	1		I	
	Descent	Speed	arget				
	P: engine-out						
Speed/	P: THRUST HOLD						

Situation-Goal-Behavior (SGB) Model for Op Embedded Control System

SGB: one-stop-shopping for Certification (DO-178)

- Design-by-Verification
 - Logical Completeness
 - Logical Consistency
- Missing "behavior"

SGB: auto-generation of code

Goals		Airmass	Descent	Late	Descent	Descent Path	Overspeed
Inputs	Situations/	Aircraft is	Aircraft is	A/C is	Aircraft is	Aircraft	Aircraft is
	Input States	Descending	descendin	level	descending	exceeds	level with a
		(without	g early of	late of	late of D/A	speed	speed that
		both Prof	D/A Path	the	Path and	tolerance	exceeds the
		and FMS	and	D/A	Prof/FMS	while	speed
		Speeds)	Prof/FMS	Path	speed	descending	tolerance
			speed	level at	engaged	on D/A path	when ref. Alt
			engaged	the ref.			is lowered
				Alt and			and a/c
				the ref.			captures D/A
		[alt			path
VG Type	VNAV /Prof			1	1	1	1
Altitude	Airmass –	1	1	1			
	VNAV/Prof						
	Airmass - AFS						
Aircraft	Above distance			Citur	tion -		
Altitude	Referenced D/A			JILUC			
	path						
	below distance			com	pinatio	on ot	
	Referenced D/A						
	path			Innu	t State	C	
Aircraft	Overspeed for			inpu	t State	.5	1
Speed	D/A path						
	Within speed	1	1	1	1		
	tolerance for			1			
	D/A path						
Aircraft	Within D/A						
Altitude	Path capture			1			
	region						
	Not Within D/A	1	1	1	1		
	Path capture			1			
	region						
Reference	Has not changed						
Altitude	Has changed		1	1			1
			ļ				
Behaviors		Airmass	Referenced	Airmass	Referenced	Airmass	Referenced
		Descent to	recapture	Descent	to recapture	Descent D/A	around the at
		the D/A path	using the	the D/A	path using	path path	the D/A speed
		D/A path	descent	the late	descent speed	descent	profile
Altitude	M:Climb/Cruise	speed	oronne	D	•		
Target	M:Descent/App	Descent/	pproach	Beha	avior =		machTam
Target	roach	Altitude	arget				loachtafg
Speed	Mil ate descent	Annude	argei	Com	hinati	on of	
speed	M.Late descent		1	COM	Smath		
Target	M:		_	F			mach
rarget	Descent/Approach		1	runc	TIONS		et
	M: Airmass	Airmass	Descent				ci
	Descent	Sneed	Pescent				
	Descent P: engine out	speed	argei				
Speed/	P: THRUST HOLD						
Speed/		1		1			

Collaborative Functional Design Using X-ML

What are the Gaps in X-ML Designs?

• X-ML Design is Missing Input

 Design is *absent one or more of the required inputs* (i.e. sensors/data feeds) to identify one or more of the operational situations that must be covered by the operationally embedded system

X-ML is Missing Input/State Combinations

- Given all the required inputs, the design is *absent one or more combinations of input states* to respond to *all* the operational situations that must be covered by the operationally embedded system
- X-ML is Missing Mapping between Input/State Combinations to Behaviors
 - Given the required inputs to support all the combinations of input states and all the combinations of input states, the design is *absent one or more the correct mappings* between operational situations and appropriate behaviors

Mitigating Gaps in X-ML Designs

- X-ML is Missing Input/State Combinations
 - Given all the required inputs, the design is *absent* one or more combinations of input states to respond to *all* the operational situations that must be covered by the operationally embedded system
- Use SGB Model to generate Complete Design
 - Generate all the combinations of Input/States
- Use SGB Model to generate Consistent Design
 - Make sure no duplicate combinations of Input/States

Mitigating Gaps in X-ML Designs

- <u>X-ML is Missing Mapping between</u> Input/State Combinations to Behaviors
 - Given the required inputs to support all the combinations of input states and all the combinations of input states, the design is *absent one or more the correct mappings* between operational situations and appropriate behaviors

- Use SGB Model to generate Complete
 Design
 - Check each legal Behavior

Mitigating Gaps in X-ML Designs

• X-ML Design is Missing Input

- Design is *absent one or more of the required inputs* (i.e. sensors/data feeds) to identify one or more of the operational situations that must be covered by the operationally embedded system
- Scenario Analysis/Use Cases
- Hazard Analysis

Realistic Use of X-ML: Collaborative Functional Design Using X-ML

