
Collaborative Functional Design Using 
Explainable Machine Learning (X-ML) 

Lance Sherry, Jim Baldo, Brett Berlin, Oleksandra Snisarevska-Donnelly

lsherry@gmu.edu

DE 1:35 – 02:05pm  Oct 29

1

Archived 
Data

Generate 
X-ML 

Model
(Prelim)
Model

Verification-
by-Design

(Model 
Checking)

Model

Gaps

Gaps

Gaps

(Complete)

Model
Generate 

Code

Code 
Algor
ithm

Complete 
the Design

Domain 
Knowledge

Center for Air Transportation Systems Research at George Mason University

lsherry@gmu.edu

Collaborative Human/X-L Design



The AI Advertising

2

Archived Data

Generate X-
ML Model Model

Generate 
Code

Code Algorithm

Center for Air Transportation Systems Research at George Mason University



The Reality
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The Solution:
Collaborative Functional Design Using Explainable Machine Learning (X-ML) 
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Operationally Embedded Control Systems

• Embedded on vehicle or plant

• Provide Guidance and Control functions to perform Mission

• Complex 
• Over 200 input signals
• Over 10 actuator command outputs
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Operationally Embedded Control Systems

• Operationally embedded control systems 
are widely used:
• military applications 
• vehicle guidance and control
• robot manipulation
• mission planning
• health diagnosis
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Operationally Embedded Control Systems

• functional behavior of a typical military operationally embedded control 
system is complex
• over 200 input signals 
• 10 outputs actuator commands

• Many applications require operational reliability of at least five-nines for 
“airworthiness” approval
• Interpretable:

• System Description Documents
• Training Manuals
• Operator User-interfaces

• Executable
• Certifiable (e.g. DO-178)
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Operationally Embedded Control Systems
• Traditional System Engineering practice:

• specifies the functional requirements for the operationally embedded 
control systems 

• a manual engineering process 
• engineers collaborate with operators to define what the automation should do 

at all times. 

• Specifications take the form of functional descriptions of behavior
• map inputs representing the state of the operational environment to 

outputs (commands to actuators or guidance/alerts on displays)

• Functional behavior requirements can be specified using several 
modeling language constructs including combinations of:
• “shall” requirements
• Action Diagrams
• Functional Flow Block Diagrams
• state-charts, logic diagrams
• control law diagrams

• When the modeling construct is executable it can be used to:
• automatically generate code 
• provide verification by analysis of the design
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Operationally Embedded Control Systems

• Traditional System Engineering practice:
• specifies the functional requirements for the operationally embedded control 

systems 
• a manual engineering process 

• engineers collaborate with operators to define what the automation should do at all times. 

• Time consuming
• 1-2 years in design, coding and testing

• Subject to errors
• Three Design Error Archetypes

1. Fail to cover situations that can occur in operations
1. Missing input
2. Missing combination of input/states

2. Fail to specify the appropriate behavior to situations that can occur in operations.
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Machine Learning for OECS

• Generate functions with complex behaviors
1. Process massive amounts of data (input: output pairs)
2. Supervised Learning
3. Test
4. Deploy

• Capture complex behavior with little/no engineering effort
• Potential to significantly reduce development time!

• Can this potential be fulfilled? What are the limitations
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Machine Learning for OECS

• AI/ML technologies provide potential to develop and field functions
• Increased complex functional behavior
• Lower Development costs and time
• Safer (through increased complex functional behavior)

• Better than humans?

• Can this potential be fulfilled? What are the limitations
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Case Study: ACAS
• Decision logic
• Finite “collision geometry design-space”
• Each “collision geometry” has defined response
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Case Study: HSCT – VNAV G&CF

• NASA High Speed Civil Transport (HSCT) Flight Management System 
(FMS)
• HSCT FMS is based on MD-11 FMS

• Generated FOQA data from simulation flights
• ~18,000 “Guidance and Control” scenarios
• Scenarios included rare-events (e.g. Engine-out)
• Data had to balanced to increase frequency of rare-event situations

• ~ 26,000 “Guidance and Control” scenarios

17



Case Study: X-ML Model Accuracy Parameters
Precision: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

Recall: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

Fscore: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

Support: [220 167 193 183 203 236 195 187 199 210 206 195 208]

Train Accuracy:  1.0

Test Accuracy:  1.0

Confusion matrix: 

[[220   0   0   0   0   0   0   0   0   0   0   0   0]

[  0 167   0   0   0   0   0   0   0   0   0   0   0]

[  0   0 193   0   0   0   0   0   0   0   0   0   0]

[  0   0   0 183   0   0   0   0   0   0   0   0   0]

[  0   0   0   0 203   0   0   0   0   0   0   0   0]

[  0   0   0   0   0 236   0   0   0   0   0   0   0]

[  0   0   0   0   0   0 195   0   0   0   0   0   0]

[  0   0   0   0   0   0   0 187   0   0   0   0   0]

[  0   0   0   0   0   0   0   0 199   0   0   0   0]

[  0   0   0   0   0   0   0   0   0 210   0   0   0]

[  0   0   0   0   0   0   0   0   0   0 206   0   0]

[  0   0   0   0   0   0   0   0   0   0   0 195   0]

[  0   0   0   0   0   0   0   0   0   0   0   0 208]]
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but …
• VNAV and ACAS were “missing” Behavior
1. Missing Situations

1. Missing Inputs
2. Missing Input/State combinations

2. Missing Situation-Behavior Mapping

No Type I or II Errors



What are the Gaps in X-ML Designs?

• X-ML Design is Missing Input
• Design is absent one or more of the required inputs (i.e. sensors/data feeds) to 

identify one or more of the operational situations that must be covered by the 
operationally embedded system

• X-ML is Missing Input/State Combinations
• Given all the required inputs, the design is absent one or more combinations of 

input states to respond to all the operational situations that must be covered by the 
operationally embedded system 

• X-ML is Missing Mapping between Input/State Combinations to Behaviors
• Given the required inputs to support all the combinations of input states and all the 

combinations of input states, the design is absent one or more the correct mappings 
between operational situations and appropriate behaviors
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Research Objectives

• Demonstrate development of  DO-178 certifiable Operationally 
Embedded Control System
• Explainable Machine Learning
• Model must be:

• Interpretable
• Executable
• Compatible with existing airworthiness certification standards
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X-ML OECS Method

• Exploit “natural” architecture of Guidance and Control Systems to 
generate X-ML algorithms
• X-ML algorithms can be:

• converted to functional behavior models
• mapped to situation/intent/behavior modes
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Example OECS: Vehicle Guidance and Control Function
G&CF (Inputs, 
Outputs)

Fixed Wing Automobile

Input:
4-D Planned Route

“Flight plan” 
• 4-D 
• Navigation Procedures
• Air Traffic Control
• Traffic avoidance
• Terrain avoidance
• Env. – Windshear

“Route” 
• 4-D 
• Roadway Rules
• Signage and Traffic Lights
• Traffic avoidance
• Terrain avoidance
• Env. – surface conditions, 

visibility

Output:
Commands

• Elevator
• Aileron
• Rudder
• Thrust

• Accelerator/Brake
• Steering
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Example OECS: Vehicle Guidance and Control Function

• Three components:
1. Control Laws

• Closed-loop control laws (continuous mathematics)
• Designed based on models of vehicle and actuator dynamics 

2. Decision-making for Targets and Control Modes
• Decision (logic)
• Designed based on:

• Closed-loop control law operational boundaries
• Vehicle performance operational limits
• Mission operational rules and constraints

3. Interpretation 
• Translate sensor/user-interface input data into operationally meaningful mission data
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Interpretation

Control Laws

Decision-making for Targets 
and Control Modes
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> 80% of the functional behavior

< 10% of the functional behavior

< 10% of the functional behavior

X-ML



Decision-making (DM) for Targets and 
Control Modes (T&CM)

• Inputs to DM-T&CM
• Inputs (States)

• Examples
• Landing Gear (Up, Down)
• Flightphase (Taxi, Takeoff, Climb, Cruise ,. ….)
• Aircraft Altitude (< Ref Alt – 250 ft, Between Ref Alt -250 ft and  Ref Alt + 250 ft, > Ref Alt + 

250 ft)

• ~ 150 inputs (Avg 3 states)

• Outputs from DM-T&CM
• Targets for Altitude, Airspeed, Vertical Speed 
• Control Mode

29



Formalism for Capturing DM for T&MC

• Situation-Goal-Behavior (SGB) Tables

• Properties of SGB Table
• Formal model

• Executable
• Analyzable (e.g. logical inconsistencies)

• Captures “Operations” from Operators 
Perspectives
• What is doing now?

• Goal
• Behavior

• Why is it doing that?
• Situations

30



Situation-Goal-
Behavior (SGB) 
Model for Op 
Embedded 
Control System Input

Outputs

Input States

Functions (e.g. 
Control Laws)
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How to read an SGB:
• Inputs
• Input/States
• Outputs
• Output/Functions



Situation-Goal-
Behavior (SGB) 
Model for Op 
Embedded 
Control System Situation = 

combination of 
Input States

Behavior = 
Combination of 
Functions
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How to read an SGB:
• Inputs
• Input/States
• Outputs
• Output/Functions
• Situations (combinations of Input States)
• Behavior (combinations of Functions)



Situation-Goal-
Behavior (SGB) 
Model for Op 
Embedded 
Control System Situation = 

combination of 
Input States

Behavior = 
Combination of 
Functions
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SGB: one-stop-shopping for Certification 
(DO-178)
• Design-by-Verification

• Logical Completeness
• Logical Consistency

• Missing “behavior”

SGB: auto-generation of code



Collaborative Functional Design Using X-ML
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What are the Gaps in X-ML Designs?

• X-ML Design is Missing Input
• Design is absent one or more of the required inputs (i.e. sensors/data feeds) to 

identify one or more of the operational situations that must be covered by the 
operationally embedded system

• X-ML is Missing Input/State Combinations
• Given all the required inputs, the design is absent one or more combinations of 

input states to respond to all the operational situations that must be covered by the 
operationally embedded system 

• X-ML is Missing Mapping between Input/State Combinations to Behaviors
• Given the required inputs to support all the combinations of input states and all the 

combinations of input states, the design is absent one or more the correct mappings 
between operational situations and appropriate behaviors
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Mitigating Gaps in X-ML Designs

• X-ML is Missing Input/State Combinations
• Given all the required inputs, the design is absent 

one or more combinations of input states to 
respond to all the operational situations that 
must be covered by the operationally embedded 
system 

• Use SGB Model to generate Complete Design
• Generate all the combinations of Input/States

• Use SGB Model to generate Consistent 
Design
• Make sure no duplicate combinations of 

Input/States
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Mitigating Gaps in X-ML Designs

• X-ML is Missing Mapping between 
Input/State Combinations to Behaviors
• Given the required inputs to support all the 

combinations of input states and all the 
combinations of input states, the design is 
absent one or more the correct mappings 
between operational situations and 
appropriate behaviors

• Use SGB Model to generate Complete 
Design
• Check each legal Behavior 
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Mitigating Gaps in X-ML Designs

• X-ML Design is Missing Input
• Design is absent one or more of the required inputs (i.e. sensors/data feeds) 

to identify one or more of the operational situations that must be covered by 
the operationally embedded system

• Scenario Analysis/Use Cases
• Hazard Analysis
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Realistic Use of X-ML:
Collaborative Functional Design Using X-ML
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