
Collaborative Functional Design Using
Explainable Machine Learning (X-ML)

Lance Sherry, Jim Baldo, Brett Berlin, Oleksandra Snisarevska-Donnelly

lsherry@gmu.edu

DE 1:35 – 02:05pm Oct 29

1

Archived
Data

Generate
X-ML

Model
(Prelim)
Model

Verification-
by-Design

(Model
Checking)

Model

Gaps

Gaps

Gaps

(Complete)

Model
Generate

Code

Code
Algor
ithm

Complete
the Design

Domain
Knowledge

Center for Air Transportation Systems Research at George Mason University

lsherry@gmu.edu

Collaborative Human/X-L Design

The AI Advertising

2

Archived Data

Generate X-
ML Model Model

Generate
Code

Code Algorithm

Center for Air Transportation Systems Research at George Mason University

The Reality

3Center for Air Transportation Systems Research at George Mason University

Archived Data

Generate X-
ML Model Model

Generate
Code

Code Algorithm
(Missing Cases)

Gaps

Gaps

Gaps

The Solution:
Collaborative Functional Design Using Explainable Machine Learning (X-ML)

4

Archived
Data

Generate
X-ML

Model
(Prelim)
Model

Verification-
by-Design

(Model
Checking)

Model

Gaps

Gaps

Gaps

(Complete)

Model
Generate

Code

Code
Algor
ithm

Domain
Knowledge

Complete the Design

The X-ML Model is not complete

Center for Air Transportation Systems Research at George Mason University

Complete the
Design

Table of Contents

1. Operationally Embedded Control Systems (OECS)
2. Design and Testing for OECS
3. Machine Learning for OECS
4. Case Studies
5. Research Objective
6. Collaborative Functional Design Using X-ML

5Center for Air Transportation Systems Research at George Mason University

Operationally Embedded Control Systems

• Embedded on vehicle or plant

• Provide Guidance and Control functions to perform Mission

• Complex
• Over 200 input signals
• Over 10 actuator command outputs

6

Operationally Embedded Control Systems

• Operationally embedded control systems
are widely used:
• military applications
• vehicle guidance and control
• robot manipulation
• mission planning
• health diagnosis

7

Operationally Embedded Control Systems

• functional behavior of a typical military operationally embedded control
system is complex
• over 200 input signals
• 10 outputs actuator commands

• Many applications require operational reliability of at least five-nines for
“airworthiness” approval
• Interpretable:

• System Description Documents
• Training Manuals
• Operator User-interfaces

• Executable
• Certifiable (e.g. DO-178)

8

Table of Contents

1. Operationally Embedded Control Systems (OECS)
2. Design and Testing for OECS
3. Machine Learning for OECS
4. Case Studies
5. Research Objective
6. Collaborative Functional Design Using X-ML

9Center for Air Transportation Systems Research at George Mason University

Operationally Embedded Control Systems
• Traditional System Engineering practice:

• specifies the functional requirements for the operationally embedded
control systems

• a manual engineering process
• engineers collaborate with operators to define what the automation should do

at all times.

• Specifications take the form of functional descriptions of behavior
• map inputs representing the state of the operational environment to

outputs (commands to actuators or guidance/alerts on displays)

• Functional behavior requirements can be specified using several
modeling language constructs including combinations of:
• “shall” requirements
• Action Diagrams
• Functional Flow Block Diagrams
• state-charts, logic diagrams
• control law diagrams

• When the modeling construct is executable it can be used to:
• automatically generate code
• provide verification by analysis of the design

10

Operationally Embedded Control Systems

• Traditional System Engineering practice:
• specifies the functional requirements for the operationally embedded control

systems
• a manual engineering process

• engineers collaborate with operators to define what the automation should do at all times.

• Time consuming
• 1-2 years in design, coding and testing

• Subject to errors
• Three Design Error Archetypes

1. Fail to cover situations that can occur in operations
1. Missing input
2. Missing combination of input/states

2. Fail to specify the appropriate behavior to situations that can occur in operations.

11

Table of Contents

1. Operationally Embedded Control Systems (OECS)
2. Design and Testing for OECS
3. Machine Learning for OECS
4. Case Studies
5. Research Objective
6. Collaborative Functional Design Using X-ML

12Center for Air Transportation Systems Research at George Mason University

Machine Learning for OECS

• Generate functions with complex behaviors
1. Process massive amounts of data (input: output pairs)
2. Supervised Learning
3. Test
4. Deploy

• Capture complex behavior with little/no engineering effort
• Potential to significantly reduce development time!

• Can this potential be fulfilled? What are the limitations

13

Machine Learning for OECS

• AI/ML technologies provide potential to develop and field functions
• Increased complex functional behavior
• Lower Development costs and time
• Safer (through increased complex functional behavior)

• Better than humans?

• Can this potential be fulfilled? What are the limitations

14

Table of Contents

1. Operationally Embedded Control Systems (OECS)
2. Design and Testing for OECS
3. Machine Learning for OECS
4. Case Studies
5. Research Objective
6. Collaborative Functional Design Using X-ML

15Center for Air Transportation Systems Research at George Mason University

Case Study: ACAS
• Decision logic
• Finite “collision geometry design-space”
• Each “collision geometry” has defined response

16

Case Study: HSCT – VNAV G&CF

• NASA High Speed Civil Transport (HSCT) Flight Management System
(FMS)
• HSCT FMS is based on MD-11 FMS

• Generated FOQA data from simulation flights
• ~18,000 “Guidance and Control” scenarios
• Scenarios included rare-events (e.g. Engine-out)
• Data had to balanced to increase frequency of rare-event situations

• ~ 26,000 “Guidance and Control” scenarios

17

Case Study: X-ML Model Accuracy Parameters
Precision: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

Recall: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

Fscore: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

Support: [220 167 193 183 203 236 195 187 199 210 206 195 208]

Train Accuracy: 1.0

Test Accuracy: 1.0

Confusion matrix:

[[220 0 0 0 0 0 0 0 0 0 0 0 0]

[0 167 0 0 0 0 0 0 0 0 0 0 0]

[0 0 193 0 0 0 0 0 0 0 0 0 0]

[0 0 0 183 0 0 0 0 0 0 0 0 0]

[0 0 0 0 203 0 0 0 0 0 0 0 0]

[0 0 0 0 0 236 0 0 0 0 0 0 0]

[0 0 0 0 0 0 195 0 0 0 0 0 0]

[0 0 0 0 0 0 0 187 0 0 0 0 0]

[0 0 0 0 0 0 0 0 199 0 0 0 0]

[0 0 0 0 0 0 0 0 0 210 0 0 0]

[0 0 0 0 0 0 0 0 0 0 206 0 0]

[0 0 0 0 0 0 0 0 0 0 0 195 0]

[0 0 0 0 0 0 0 0 0 0 0 0 208]]

18

but …
• VNAV and ACAS were “missing” Behavior
1. Missing Situations

1. Missing Inputs
2. Missing Input/State combinations

2. Missing Situation-Behavior Mapping

No Type I or II Errors

What are the Gaps in X-ML Designs?

• X-ML Design is Missing Input
• Design is absent one or more of the required inputs (i.e. sensors/data feeds) to

identify one or more of the operational situations that must be covered by the
operationally embedded system

• X-ML is Missing Input/State Combinations
• Given all the required inputs, the design is absent one or more combinations of

input states to respond to all the operational situations that must be covered by the
operationally embedded system

• X-ML is Missing Mapping between Input/State Combinations to Behaviors
• Given the required inputs to support all the combinations of input states and all the

combinations of input states, the design is absent one or more the correct mappings
between operational situations and appropriate behaviors

19

Table of Contents

1. Operationally Embedded Control Systems (OECS)
2. Design and Testing for OECS
3. Machine Learning for OECS
4. Case Studies
5. Research Objective
6. Collaborative Functional Design Using X-ML

20Center for Air Transportation Systems Research at George Mason University

Research Objectives

• Demonstrate development of DO-178 certifiable Operationally
Embedded Control System
• Explainable Machine Learning
• Model must be:

• Interpretable
• Executable
• Compatible with existing airworthiness certification standards

21

Table of Contents

1. Operationally Embedded Control Systems (OECS)
2. Design and Testing for OECS
3. Machine Learning for OECS
4. Case Studies
5. Research Objective
6. Collaborative Functional Design Using X-ML

22Center for Air Transportation Systems Research at George Mason University

X-ML OECS Method

• Exploit “natural” architecture of Guidance and Control Systems to
generate X-ML algorithms
• X-ML algorithms can be:

• converted to functional behavior models
• mapped to situation/intent/behavior modes

23

Sensor

Example OECS: Vehicle Guidance and Control Function

Guidance and Control
Function

Actua
tor

Actua
tor

Actua
tor

Vehicle

Control
Surface

Control
Surface

Propuls
ion

Sensor
Sensor

Sensor
Sensor

Sensor

Mission Planning
Function

4-D
Planned
Route

Command

Command

Command

• Policies
• Regulations

24

Example OECS: Vehicle Guidance and Control Function
G&CF (Inputs,
Outputs)

Fixed Wing Automobile

Input:
4-D Planned Route

“Flight plan”
• 4-D
• Navigation Procedures
• Air Traffic Control
• Traffic avoidance
• Terrain avoidance
• Env. – Windshear

“Route”
• 4-D
• Roadway Rules
• Signage and Traffic Lights
• Traffic avoidance
• Terrain avoidance
• Env. – surface conditions,

visibility

Output:
Commands

• Elevator
• Aileron
• Rudder
• Thrust

• Accelerator/Brake
• Steering

25

Example OECS: Vehicle Guidance and Control Function

• Three components:
1. Control Laws

• Closed-loop control laws (continuous mathematics)
• Designed based on models of vehicle and actuator dynamics

2. Decision-making for Targets and Control Modes
• Decision (logic)
• Designed based on:

• Closed-loop control law operational boundaries
• Vehicle performance operational limits
• Mission operational rules and constraints

3. Interpretation
• Translate sensor/user-interface input data into operationally meaningful mission data

26

Interpretation

Control Laws

Decision-making for Targets
and Control Modes

Targets Control Modes

Command

Sensor & Input
Control Device

Inputs

Mode Control Panel

Flight Plan

Aircraft State

Airspace

27

Interpretation

Control Laws

Decision-making for Targets
and Control Modes

Targets Control Modes

Command

Sensor & Input
Control Device

Inputs

Mode Control Panel

Flight Plan

Aircraft State

Airspace

28

> 80% of the functional behavior

< 10% of the functional behavior

< 10% of the functional behavior

X-ML

Decision-making (DM) for Targets and
Control Modes (T&CM)

• Inputs to DM-T&CM
• Inputs (States)

• Examples
• Landing Gear (Up, Down)
• Flightphase (Taxi, Takeoff, Climb, Cruise ,. ….)
• Aircraft Altitude (< Ref Alt – 250 ft, Between Ref Alt -250 ft and Ref Alt + 250 ft, > Ref Alt +

250 ft)

• ~ 150 inputs (Avg 3 states)

• Outputs from DM-T&CM
• Targets for Altitude, Airspeed, Vertical Speed
• Control Mode

29

Formalism for Capturing DM for T&MC

• Situation-Goal-Behavior (SGB) Tables

• Properties of SGB Table
• Formal model

• Executable
• Analyzable (e.g. logical inconsistencies)

• Captures “Operations” from Operators
Perspectives
• What is doing now?

• Goal
• Behavior

• Why is it doing that?
• Situations

30

Situation-Goal-
Behavior (SGB)
Model for Op
Embedded
Control System Input

Outputs

Input States

Functions (e.g.
Control Laws)

31

How to read an SGB:
• Inputs
• Input/States
• Outputs
• Output/Functions

Situation-Goal-
Behavior (SGB)
Model for Op
Embedded
Control System Situation =

combination of
Input States

Behavior =
Combination of
Functions

32

How to read an SGB:
• Inputs
• Input/States
• Outputs
• Output/Functions
• Situations (combinations of Input States)
• Behavior (combinations of Functions)

Situation-Goal-
Behavior (SGB)
Model for Op
Embedded
Control System Situation =

combination of
Input States

Behavior =
Combination of
Functions

33

SGB: one-stop-shopping for Certification
(DO-178)
• Design-by-Verification

• Logical Completeness
• Logical Consistency

• Missing “behavior”

SGB: auto-generation of code

Collaborative Functional Design Using X-ML

34

Archived
Data

Generate
X-ML

Model

Prelim
Model
(SGB)

Verification-
by-Design

(Model
Checking)

Model
(SGB)

Gaps

Gaps

Gaps

(Complete)

Model
(SBG)

Generate
Code

Code
Algor
ithm

Complete
the Design

Domain
Knowledge

Identify the Missing
Situation/Behavior

using SGB Executable
Model

Add the Missing
Situation/Behavior using

SGB Development
Environment

What are the Gaps in X-ML Designs?

• X-ML Design is Missing Input
• Design is absent one or more of the required inputs (i.e. sensors/data feeds) to

identify one or more of the operational situations that must be covered by the
operationally embedded system

• X-ML is Missing Input/State Combinations
• Given all the required inputs, the design is absent one or more combinations of

input states to respond to all the operational situations that must be covered by the
operationally embedded system

• X-ML is Missing Mapping between Input/State Combinations to Behaviors
• Given the required inputs to support all the combinations of input states and all the

combinations of input states, the design is absent one or more the correct mappings
between operational situations and appropriate behaviors

35

Mitigating Gaps in X-ML Designs

• X-ML is Missing Input/State Combinations
• Given all the required inputs, the design is absent

one or more combinations of input states to
respond to all the operational situations that
must be covered by the operationally embedded
system

• Use SGB Model to generate Complete Design
• Generate all the combinations of Input/States

• Use SGB Model to generate Consistent
Design
• Make sure no duplicate combinations of

Input/States

36

Model

Gaps

Gaps

Gaps

(Complete)

Model
Complete
the Design

Domain
Knowledge

Mitigating Gaps in X-ML Designs

• X-ML is Missing Mapping between
Input/State Combinations to Behaviors
• Given the required inputs to support all the

combinations of input states and all the
combinations of input states, the design is
absent one or more the correct mappings
between operational situations and
appropriate behaviors

• Use SGB Model to generate Complete
Design
• Check each legal Behavior

37

Model

Gaps

Gaps

Gaps

(Complete)

Model
Complete
the Design

Domain
Knowledge

Mitigating Gaps in X-ML Designs

• X-ML Design is Missing Input
• Design is absent one or more of the required inputs (i.e. sensors/data feeds)

to identify one or more of the operational situations that must be covered by
the operationally embedded system

• Scenario Analysis/Use Cases
• Hazard Analysis

38

Model
(SGB)

Gaps

Gaps

Gaps

(Complete)

Model
(SGB)

Complete
the Design

Domain
Knowledge

Realistic Use of X-ML:
Collaborative Functional Design Using X-ML

39

Archived
Data

Generate
X-ML

Model

Prelim
Model
(SGB)

Verification-
by-Design

(Model
Checking)

Model
(SGB)

Gaps

Gaps

Gaps

(Complete)

Model
(SGB)

Generate
Code

Code
Algor
ithm

Complete
the Design

Domain
Knowledge

Identify the
Missing Behavior

using SGB
Executable Model

Add the Missing
Behavior using

SGB Development
Environment

Center for Air Transportation Systems Research at George Mason University

lsherry@gmu.edu

