

WRT-1011: Quantifying Mission Impact for Technology Alternatives

Dr. Eric Weisel (PI) Dr. Saikou Diallo Dr. Erika Frydenlund

Cross Service

USAF, USN, USMC, ANG

COALITION

12

Hostile

targets

8

CAS aircraft

13

Research Task / Overview

A persistent challenge for acquisition stakeholders is a method to value technology alternatives against mission impact that meaningfully informs decision-making for the purpose of relating value and cost.

- Expected value of information theory provides a wellestablished basis for valuing various forms of information within a decision-theoretic framework
- Our approach is to apply this theory as a basis to value technology alternatives for well-specified mission impacts
- Then demonstrate feasibility by analysis comparing two model-informed alternatives of varying fidelity

Mission Event No.	Description	
1	Unit detects target	
2	Commander decides to request CAS	
3	Unit notified TACP	
4	TACP passes request to ASOC < 5 min	
5	ASOC coordinates with senior ground HQs which approve request	
6	ASOC assigns on-call aircraft	
7	CRC send aircraft to contact point (CP)	
8	AWACS passes critical updates to aircraft > 95% Acrcy	
9	JTAC briefs aircraft < 3 min	
10	Aircraft depart initial point (IP)	
11	JTAC controls CAS aircraft	
12	Bombs on target > 98.9 % PK	
13	Assessment	

KILL CHAIN ANALYTICS

Goals & Objectives

Our objective for this effort is to demonstrate an effective, i.e. algorithmic, method to value modelinformed alternatives for well-specified objectives. If successful, this approach will establish expected value of information theory as a basis to **quantify the modelinformed trade-space** between cost of technology alternatives and mission effectiveness. We envision this approach as the basis for an enabling technology to **optimize modeling decisions within this trade-space**. A successful research outcome will:

- Provide a rigorous mathematical basis for design of experiments for testing model-based alternatives
- Demonstrate the use of expert opinion as initial evidence via the Bayesian priors
- Formalize growing confidence in model-informed results, even when initial probabilities are difficult to quantify
- Develop techniques to quantify the value of mission effectiveness using familiar financial metrics such as Expected Value of Sample Information and Return on Investment.

Methodology

The proposed solution applies Bayesian statistical inference to an Expected Value of Sample Information decision structure to iteratively exploit simulation or model-based test data in a mathematically rigorous and defensible way. The method builds upon an existing framework for valuing simulation alternatives for training systems based on use. Develop mathematical analyses, walk-through examples, demonstrations, or empirical analyses to demonstrate the feasibility or limitations of the following elements of the technical solution:

- Value specific performance-based outcomes
- Estimate probabilities using Bayesian analysis
- Initialize using subjective prior probabilities
- Differentiate the value of model-informed alternatives of varying fidelity using expected value or expected utility

Future Research

Develop a software component that calculates EVSIbased score for technology alternatives in a Mission Engineering and Integration Framework:

Data & Analysis

Senior Ground

5

ASOC/ DASC

TACP

Commander

НQ

CRC

6

Cross Service

USA/USMC/COALITION

9,11

JTAC

TACP-CASS STRIKELINK BAO-KIT COALITION

1

<complex-block>

- Specification tools for missions and mission threads
- Adaptive data engineering and scenario generation
- · Persistent data collection from simulation analytics
- Integrated scoring component in Mission Engineering and Integration analytics environment

Contacts/References

Eric Weisel, Ph.D.	Saikou Diallo, Ph.D.	Erika Frydenlund, Ph.D.
EWeisel@ODU.edu	SDiallo@ODU.edu	EFrydenl@ODU.edu

- Ades, A. E., G. Lu and K. Claxton. 2004. Expected Value of Sample Information Calculations in Medical Decision Modeling. *Medical Decision Making* 24, pp. 207-227.
- Chen, M. H., and A. R. Willan. 2014. Value of Information Methods for Assessing a New Diagnostic Test. Statistics in Medicine 33, pp. 1801-1815.
- Claxton, K. 1999. The Irrelevance of Inference: A Decision-Making Approach to the Stochastic Evaluation of Health Care Technologies. *Journal of Health Economics* 18, pp. 341–364.
- Weisel, E. W. and M. D. Petty. 2013. A Bayesian Approach to Assessing Expected Utility in the Simulation Decision. Proceedings of the 2013 Summer Simulation Multi-Conference, Toronto, ON, Canada, July 7-10, 2013.
- Weisel, E. W. 2013. Expected Value of Sample Information as a Measure of Return-On-Investment in Simulation, Engineering and Applied Science, MODSIM World Conference, Hampton VA, May 2, 2013.
- Weisel, E. W. 2012. A Decision-Theoretic Approach to Defining Use for Computer Simulation. Proceedings of the 2012 Autumn Simulation Multi-Conference, San Diego, CA, October 28-31, 2012.

Winston, W. L. 2004. Operations Research. Thompson Learning, Belmont, CA, pp. 758-763.